
Lecture 3: Integer Operations 15-213/15-513/14-513 Fall 2022

1 Introduction

In this activity you will learn about integer operations.
Before you begin, take a minute to assign roles to each member in your group. Try

to switch up the roles as much as possible: please don’t pick a role for yourself that
you have already done more than once. Below is a summary of the four roles; write
the name of the person taking that role next to the summary.

If your group only has three members, combine the roles of Facilitator and Process
Analyst.

For this and all future activities, the Facilitator should also take the role of the reader
and read the questions aloud to the group.

Facilitator Reads question aloud; keeps track of time and makes sure everyone
contributes appropriately.

Quality Control Records all questions and answers, and provides team reflection to
team and instructor.

Spokesperson Talks to the instructor and other teams. Compiles and runs programs
when applicable.

Process Analyst Considers how the team could work and learn more effectively.

Fill in the following table showing which group member is performing each role:

Role Person

Facilitator
Quality Control
Spokesperson
Process Analyst

1/10

BBI 2

2 Model 0: Review of Representation

Questions: 6 / Allocated Time: 7 minutes

Problem 1. Add the following two unsigned binary numbers together. Give the result
in both binary and decimal.

1 0 1 0
+ 1 0 0 0

Problem 2. How many bits were required to represent the sum in the previous
question?

Problem 3. If you only have 4 bits to represent this sum, what number(s) might you
provide? Explain.

The bit representation of a number X is a string of bits

⟨X⟩ = ⟨Xw, Xw−1, . . . , X2, X1, X0⟩

where each Xi is either 1 or 0. w is called the bit width of X.

Problem 4. Supposing ⟨X⟩ is an unsigned bit representation (that is, it can only represent
numbers greater than or equal to 0), give a formula for the value of X in terms of the
Xi. (Hint: a summation will be required.)

Problem 5. Give a similar formula for when ⟨X⟩ is a two’s complement bit representation
(can represent any integer, as long as w is big enough).

2/10

BBI 2

Problem 6. Bit Xw of a bit representation is sometimes called the “sign bit.” What
makes this bit different from all the other bits of a representation? Why do you think
“sign bit” is an appropriate name for this bit?

3 Model 1: Review of Limits/Negative Conversion

Questions: 7 / Allocated Time: 8 minutes

Problem 7. Complete the following table to indicate the most positive (i.e. largest)
and most negative (i.e. smallest) number that can be represented with a given number
of bits when using two’s complement representation.

Bits Most Positive Most Negative

1 0 −1
2 1 −2
3
4

Problem 8. Considering the pattern in the table above, give an expression for the most
positive number that can be represented by a N-bit two’s complement number. (The
textbook calls this number Tmax, T for two’s complement. Hint: Tmax will be related to
a power of two in some way.)

Problem 9. Considering the pattern in the table above, give an expression for the most
negative number that can be represented by a N-bit two’s complement number. (The
textbook calls this number Tmin. It will also be related to a power of two in some way.)

Problem 10. Add the following two binary numbers together. If there is a carry out
from the leftmost bit, discard it (that is, give only the lowest eight bits of the sum).

1111 1000
+ 0010 0111

3/10

BBI 2

Problem 11. Convert all three numbers from the previous problem to decimal, treating
the binary numbers as unsigned. Is the sum correct (modulo 256)?

Problem 12. Convert all three numbers from the previous problem to decimal, treating
the binary numbers as signed. Is the sum still correct?

Problem 13. Given what you observed in the previous question, does the architecture
need multiple adders in hardware for signed and unsigned addition?

4 Model 2: Bitwise Operations

Questions: 7 / Allocated Time: 8 minutes
In 1847, George Boole proposed a way to treat formal logic as a mathematical system,

by treating “true” and “false” as the numbers 1 and 0, respectively, and defining
mathematical operators based on the standard operations of formal logic—AND, OR,
XOR, and NOT. The system he devised is now known as Boolean algebra.

Most programming languages allow you to work with “Boolean quantities” using
the operators devised by Boole. In C, there are two variants of these operators, known
as the bitwise operators and the logical operators. In this model we will study the bitwise
operators, which treat integer values as vectors of bits.

Earlier this week, one of the steps to negating a signed integer was to invert all
of the bits. This operation, complement (~ in C), can be applied to any integer. For
example, ~0x0F0F is 0xF0F0.

Problem 14. For each integer X below, compute its complement in hex and binary.

X (hex) X (bin) ~X (bin) ~X (hex)

0xCAFE
0x3C3C
0x0000

4/10

BBI 2

Problem 15. There are three other bitwise operators: AND (& in C), OR (|), and XOR
(^). Unlike ~, these are binary operators. When applied to two bits a and b: a & b is 1
when (and only when) both operands are 1. a | b is 1 when at least one operand is 1.
And a ^ b is 1 when only 1 operand is 1. (The X is for eXclusive, i.e. one but not both.)
Complete the table below.

a b a & b a | b a ^ b

0 0 0 0 0
1 0 0 1 1
0 1
1 1

Problem 16. When applied to integers, &, |, and ^ work on each pair of bits indepen-
dently. Fill in the following table:

X (Dec) X (Bin) X & 0x1

−2 1110 0000
−1

0 0000 0000
1
2

Problem 17. For which numbers was X & 0x1 not 0000? What is a common property
of these integers?

Problem 18. Many times in systems programming, we use bits as flags. There will be
a set of constants FLAG_X, FLAG_Y, etc. each of which has a numeric value with only
one bit in its unsigned representation equal to 1. Then an unsigned int variable can
hold any combination of these flags.

If F is a variable holding flags, we can test whether a particular one of those flags,
say FLAG_Y, is true with the expression (F & FLAG_Y) == FLAG_Y. Explain what this
expression calculates.

Problem 19. The second argument to the C library function open (not to be confused
with fopen) provides a concrete example of how flags are typically used in systems
programming. The header file unistd.h declares both open and a set of flag constants

5/10

BBI 2

whose names all begin with O_ (O is for open). Here is one common way to call open,
supplying a combination of O_ flags: open a file for writing (O_WRONLY), create it if it
doesn’t exist (O_CREAT), and erase the previous contents if it does exist (O_TRUNC).

int fd = open(filename , O_WRONLY | O_CREAT | O_TRUNC,
DEFFILEMODE);

What is the effect of the | operator in this example?

Problem 20. De Morgan’s laws of logical duality say that, for all x and y, we have

~(x & y) == ~x | ~y
~(x | y) == ~x & ~y

Fill in the table below to verify the first of these laws for a selection of inputs.

x y x & y ~x | ~y Equal?

0xF 0x1
0x5 0x7
0x3 0xC

5 Model 3: Logical Operations

Questions: 4 / Allocated Time: 5 minutes
The other variant of Boolean operators in C is the logical operations. These are

closer to Boole’s original idea; there are only two possibilities for their inputs and
their outputs. Because C did not originally have a genuine Boolean type,1 the logical
operators work on integer values, just like the bitwise operators do. The difference
is that the logical operators treat any nonzero value as “true”. Only zero is treated as
“false”. Furthermore, no matter what the inputs to the logical operators are, their
output will be either 0 (false) or 1 (true).

The three logical operators are NOT (!),2 AND (&&), and inclusive OR (||). There is
no logical XOR operator.

1A genuine Boolean type was added in the 1999 revision of the C standard, but we are old-fashioned
in this course and we mostly won’t use it.

2Trivia: when reading code out loud, ! is often pronounced “bang.”

6/10

BBI 2

Problem 21. Of the 16 possible 4-bit values, how many are considered as false by the
logical operators, and how many are considered as true?

Problem 22. Evaluate the following expression: (0x3 && 0xC) == (0x3 & 0xC). Show
your work.

Problem 23. Fill in the following table to determine whether !!X == X is true for all
values of X.

X !X !!X !!X == X

−1
0
1
2

Problem 24. Now let’s do the same calculation for ~ instead of !. Will we find the
same thing?

X ~X ~~X ~~X == X

−1
0
1
2

7/10

BBI 2

6 Model 4: Multiplication, Division, and Bit Shifts

Questions: 11 / Allocated Time: 30 minutes
We observed yesterday that when you append a 0 bit to the right of a binary number,

is value is doubled. This operation is called left shift because all of the bits in the
original number move left one place. C provides an operator for shifting numbers left,
possibly by several places: x << n produces the number x shifted left by n places. (n
must be nonnegative and strictly less than the number of bits in the value x.)

Problem 25. Assuming that each of the following x-values is a 32-bit number, and bits
shifted out of the lowest 32 bits are discarded, fill in the table with the result of each
left-shift operation.

x n x << n

0x30 1
0x5A 4

0x11D 31

Problem 26. Given the expression X = (0x1 << 2) | (0x1 << 1), what is the value of
X in decimal and binary?

Problem 27. The compiler can often detect simple multiplication and replace it with
shifts and addition. What is an equivalent expression to x * 6?

Problem 28. Given the largest 3-bit unsigned integer, what is its value squared? How
many bits does this value require?

Problem 29. What is the result from the previous question if it must be stored in 3
bits?

The inverse operation of left shift is called logical right shift. To logical right shift a
number by n places, you delete the n least significant bits, move all of the surviving
bits to the right until the lowest surviving bit is in the ones place, and fill in on the left
with zeroes. C provides this operation as the >> operator. (Note: >> is only guaranteed
to perform this operation when its left operand is unsigned. See below.)

8/10

BBI 2

Problem 30. Compute the following right shifts.

x n x >> n

0x30 1
0x5A 4
0x11 3

Problem 31. Convert the values of x and x >> n in the previous question to decimal.
To what common operation is right shift equivalent?

Problem 32. Suppose we right shift the negative number −2 by one place. What value
should this produce to preserve the equivalence discussed above?

Problem 33. With 4-bit integers, what is the binary for −2? After logical right shifting
by 1, what (decimal) value to you get?

Problem 34. (Advanced) How might you change the right shift operation to make it
correctly handle signed integers?

9/10

BBI 2

Problem 35. (Advanced) One way to visualize a decimal number in binary is to
repeatedly divide by 2 and compute the remainder. Fill in the blanks in this loop
to make it compute this visualization. Assume saveNextBit(b) is a helper function
that takes in a bit (either 0 or 1), then records the given bit to the right of all currently
recorded bits.

while (x > 0) {
saveNextBit();
x = ;

}

10/10

	Introduction
	Model 0: Review of Representation
	Model 1: Review of Limits/Negative Conversion
	Model 2: Bitwise Operations
	Model 3: Logical Operations
	Model 4: Multiplication, Division, and Bit Shifts

