
Lecture 8: Data in Memory 15-213/15-513/14-513 Fall 2022

Getting Started

To obtain a copy of today’s activity, log into a shark machine and do the following:

$ wget http://www.cs.cmu.edu/~213/activities/machine-data.tar
$ tar xf machine-data.tar
$ cd machine-data

All of the questions below involve working with the program data-layout in the
debugger, so get ready to do that now:

$ gdb ./data-layout
(gdb) r

You may find it helpful to pull up some older handouts: at the end of the
handout from the first class on assembly language (https://www.cs.cmu.edu/~213/
activities/gdb-and-assembly.pdf) is a list of useful GDB commands. At the end
of the handout from the class on procedure calls (https://www.cs.cmu.edu/~213/
activities/machine-procedures.pdf) is a table listing all the x86’s integer registers
and describing how each might be used in a procedure call (e.g. %rdi holds the first
argument to the called function).

1 Integers and Local Variables

First, let’s review storage of local variables.

Problem 1. This function has a 32-bit integer local variable:

int returnOne(void) {
int local = -1;
return abs(local);

}

Disassemble returnOne and notice where local is stored. Now, what if we needed
to take the address of local? What problem might we run into, and what do you
expect the compiler to do about it?

The variable local is stored in register %edi. The problem is, registers do not have
addresses. If the code took the address of local, the compiler would have to store the
variable on the stack, instead of keeping it in a register.

Solutions 1/8

http://www.cs.cmu.edu/~213/activities/machine-data.tar
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
https://www.cs.cmu.edu/~213/activities/machine-procedures.pdf
https://www.cs.cmu.edu/~213/activities/machine-procedures.pdf

Data

Problem 2. Test your expectation from Problem 1 by disassembling the function
returnOneTwo. Its code is something like this:

int returnOne(void) {
int local = -1;
return absp(/* ??? */);

}

Based on what you see, what do you think the declaration (prototype) of absp is?

extern int absp(int *p);

2 Arrays

Now let’s review arrays of integers. The data-layout program contains one, defined
as:

int courses[4] = {0x15213, 0x15513, 0x18213, 0x18600};

Problem 3. Examine this array’s memory layout:

(gdb) x/4wx courses

Also examine the disassembly of the function getNth, which accesses an array of
integers:

int getNth(int *arr, size_t index) {
return arr[index];

}

What is the stride of an array of int (the number of bytes occupied by each entry)?
4 bytes
The stride does not appear in the C code for getNth. Does it appear in the

disassembly? If so, describe how it is used, in terms of the C-level variables.

Yes, it does. The compiler multiplies index by the stride, before adding it to the
pointer arr, to get the address of the Nth element of the array being accessed. This
is necessary because memory is byte addressable; that is, every memory address
corresponds to an individual byte, even if it’s only holding part of a wider value.

A while ago we told you that strings in C are “just” arrays of characters. ‘c’ontinue
execution of the program now. It will stop inside a function that receives a string as an
argument. Print the string with this command:

(gdb) x/s $rdi

Print it out again, as an array of bytes, using this command:

Solutions 2/8

Data

(gdb) x/12bx $rdi

Problem 4. There’s no information in any of the registers that says how long the string
pointed to by %rdi is. How does the x/s command know how long it is?

There is a NUL character (ASCII character code 0, often written ’\0’) at the end of
every C string. To find out how long the string is, you have to scan the string, counting
bytes, until you reach the NUL.

3 Structs

C allows you to define custom structured types comprising multiple named fields.
Take for example the struct defined as follows:

struct course {
int cs_ugrad;
int cs_grad;
int ece_ugrad;
int ece_grad;

};

Continue execution of the program now (use the c command again). It will stop
inside another function; this one takes a struct course * as its first argument.

Problem 5. Dump out the contents of the struct course * that was passed to the
current function using this command:

(gdb) x/4wx $rdi

Did you notice anything familiar about the layout?

The layout to this 4 integer struct looks the same as the layout of the 4 integer array
from Problem 3.

struct course is quite simple: all its members have the same type. Structs can be
much more complicated, though. Their members don’t even all have to have the same
size! Consider this one:

struct increasing {
char a;
short b;
int c;
long d;

};

Solutions 3/8

Data

Problem 6. Suppose you had an instance of struct increasing whose fields were
initialized to 0x0a, 0x0b0b, 0x0c0c0c0c, and 0x0d0d0d0d0d0d0d0d, respectively. The
table below has boxes for 32 bytes, which should be more than enough to hold a
struct increasing. Write, in each box, what value (‘a’, ‘b’, ‘c’, or ‘d’) you think will
be in each byte. If you think a byte will be unused, leave it blank.

0x00

0x08

0x10

0x18

After you fill in the table above, use the c command to resume execution. GDB will
stop inside a function that has received a struct increasing * as its first argument;
its fields have been initialized to 0x0a, 0x0b0b, 0x0c0c0c0c, and 0x0d0d0d0d0d0d0d0d,
just like we said before. Print out its contents, byte by byte, and use that information
to fill in the table below with the values each byte actually has—‘a’, ‘b’, ‘c’, or ‘d’, just
like before. If GDB says a byte is zero, leave it blank.

(gdb) x/32bx $rdi

0x00 a b b c c c c

0x08 d d d d d d d d

0x10

0x18

Compare the two tables. If the data in memory isn’t where you thought it would be,
why do you think that might have happened?

The fields of a struct need to be aligned. Any “scalar” field (not an array or a nested
struct) must be located at an offset (from the beginning of the struct) that is a multiple
of its size. The C compiler cannot change the order of fields within a struct, so instead,
to give all the fields the alignment they need, it inserts padding in between the fields.
In the case of struct increasing, there needs to be one byte of padding before b but
then the math works out neatly so that c and d get the alignment they need without
any additional padding.

Problem 7. Now consider this struct, which has the same fields as struct increasing,
but with the fields in a different order.

Solutions 4/8

Data

struct rearranged {
char a;
long b;
short c;
int d;

};

Will this type take up more or less space than struct increasing?

This type will take up more space because the order of its elements produces more
padding.

Problem 8. The function GDB is currently stopped in received a pointer to a struct
rearranged as its second argument. Use this to check your answer to Problem 7 and
fill in the table below with the layout.

0x00 a

0x08 b b b b b b b b

0x10 c c d d d d

0x18

4 Arrays of Structs

Next, we’ll look at a way to store many instances of a particular structured type: an
array of structs. For instance, we might have:

struct pair {
int large;
char small;

};
struct pair pairs[2] = {
{0xabababab , 0x1},
{0xcdcdcdcd , 0x2}

};

Problem 9. What stride do you expect this array to have? 8 bytes

Problem 10. Check your guess:

(gdb) x/16bx &pairs

What stride did the array actually have? 8 bytes
Where did the compiler insert padding, if any? After small

Solutions 5/8

Data

Why did it need to do that?

Padding after smallmakes struct pair’s size be a multiple of 4. That’s necessary
so that the second element of the array will have an address that’s a multiple of 4,
satisfying the alignment requirement of large. In general, a struct will always be
padded at the end to make its size a multiple of the alignment required by its fields.

Conversely, structs can contain arrays. In this case, the struct will be aligned to the
width of the array’s element type. Here’s an example:

struct triple {
short large[2];
char small;

};

Problem 11. How will this struct’s size compare to that of pair?

This struct is smaller, since it requires less padding. Both have elements whose total
size is 5 bytes. pair is aligned to the width of int (4 bytes), so it gets padded to a
length of 8. triple is only aligned to the width of short, (2 bytes), so it only gets
padded to a length of 6.

5 2-D Arrays

Types can be nested arbitrarily. We’ll continue by looking at arrays of arrays.
There are actually two different ways to create arrays of arrays (“multi-dimensional

arrays”) in C. Both ways allow arrays with arbitrarily many dimensions. Each is more
convenient in some circumstances.

First, let’s see how this declaration is laid out in memory:

int8_t nested[2][3] = {{0x00, 0x01, 0x02}, {0x10, 0x11, 0x12}};

You’ll probably want a command such as:

(gdb) x/6bx &nested

Problem 12. What stride do the “inner” arrays have? 1 bytes
How about the “outer” ones? 3 bytes

Problem 13. Disassemble the function access. Take note of how array strides are
embedded in its assembly code. Here is its source code:

int8_t access(int8_t (*arr)[3], size_t row, size_t column) {
return arr[row][column];

}

Solutions 6/8

Data

This function is designed to be used with an array like nested. Could it also be used
with an array declared like this: int8_t flipped[3][2]?

No, the dimensions (specifically, the outer stride) do not match. So the compiler
will not be able to access the fields of the array correctly.

Problem 14. Now, experiment with GDB commands to examine the layout of this
multi-dimensional array, which is structured differently:

int8_t first[3] = {0x00, 0x01, 0x02};
int8_t second[3] = {0x10, 0x11, 0x12};
int8_t *multilevel[2] = {first, second};

(If you need a hint, ‘c’ontinue the program and read what it prints.) What stride does
the outer array have this time? 8 bytes

Problem 15. An accessor for this type of 2-D array appears below; note the subtle
difference in its signature. Disassemble it to see what a difference this makes!

int8_t accessMultilevel(int8_t **arr, size_t row, size_t column) {
return arr[row][column];

}

Do you think this function would still be useful if first and second each had 4
elements? How about if they had two different lengths?

This function would still work because its assembly does not use the lengths of
first and second.

Problem 16. Imagine if we had instead defined multilevel as:

int8_t *multilevel[2] = {first, first};

What effect would we observe if we modified an element of first?

The modification would be observable via both multilevel[0] and multilevel[1].

6 Endianness (Optional)

If you have extra time, let’s take a more detailed look at the byte-level representation
of multi-byte integers.

When multi-byte data is stored in byte-addressable memory, it becomes possible to
observe it two different ways: as a single “word” (multi-byte unit), or as a sequence of
bytes. Given int x, for instance, the hardware must consistently treat ((char *)&x)[0]
as some specific 8-bit subset of the 32-bit int. This has given rise to a sometimes
heated debate over endianness, the rule for which part of a number should “come first”

Solutions 7/8

Data

in memory. Should it be the 8 bits with the highest place value (“big-endian”) or the 8
bits with the lowest place value (“little-endian”)?1

Problem 17. To see a demonstration of endianness in action, let’s look back at the
courses global variable. (Recall that it is an array of 32-bit integers.) Run this GDB
command:

(gdb) x/4wx &courses

That command interprets every consecutive 4 bytes of the array as a single integer.
But what happens if we ask GDB to print each byte individually? Run this command:

(gdb) x/16bx &courses

Stare carefully at that mess until you have convinced yourself that it really is the
same data you saw before! The reason it looks different is that x86-64 is a little-endian
architecture: it stores the lowest-order bits of a wide type in the byte with the lowest
memory address.

What disadvantage of little-endian did you just observe?

Little endianness is harder to read in a byte-by-byte memory dump, because it is the
opposite of the way we write numbers on paper—we could say that our conventional
notation for large numbers, e.g. “123 456 789”, is big-endian. When debugging, this
means you must transpose the bytes of a memory dump in your head, or know
debugger commands that do it for you.

Problem 18. Now let’s look at an advantage of little-endian byte order. Disassemble
the function narrowingCast. Its C source code looks like this:

int narrowingCast(long *num) {
return (int) *num;

}

How would the assembly of this function differ if x86-64 were a big-endian architec-
ture?

We would have mov 4(%rdi), %eax instead of mov (%rdi), %eax.
Little-endian byte order means the address of an integer’s lowest bits is the same as

the address of the complete integer. This means we can truncate integers simply by
reading fewer bytes from the same memory address.

1These names are a reference to the 19th century satirical novel Gulliver’s Travels, in which, at one
point, two countries fight a war over the best way to crack open hard-boiled eggs.

Solutions 8/8

	Integers and Local Variables
	Arrays
	Structs
	Arrays of Structs
	2-D Arrays
	Endianness (Optional)

