
15213 Lecture 24: Synchronization Basic

Learning Objectives
• Recognize the necessity of mutual exclusion and the situations in which mutual exclusion is

required to ensure coherence and consistency of shared state.
• Apply semaphores to protect shared state in simple situations and indicate the penalties or

shortcomings of guaranteeing mutual exclusion.

1 Getting Started
The directions for today’s activity are on this sheet, but refer to accompanying programs that you’ll
need to download. To get set up, run these commands on a shark machine:

1. $ wget http://www.cs.cmu.edu/~213/activities/lec24.tar
2. $ tar xf lec24.tar
3. $ cd lec24

2 Sharing and Mutual Exclusion
The file badcount.c contains the code from the badcnt.c example shown in lecture which spawns
two threads, each of which increments the shared count variable a specified number of times. After
joining the two threads, the main thread inspects the value of count. Open and inspect the file in
your favorite text editor.

1. Build the program with $ make badcount. Run badcount with a relatively small value for
niters, e.g. $ ./badcount 100. Then, run badcount with a larger value for niters, e.g.
$ ./badcount 10000. What did you notice? Were the counts for both values of niters
correct?

2. If you observed an incorrect count, was it lower or higher than the expected output of
2 × niters? Exactly why was this the case? If you didn’t observe an incorrect output, will
the output always be correct?

3. If you observed incorrect output, could the incorrect output be higher than 2 × niters?

4. Write down the values of niters you tried as well as the times elapsed for each run of
badcount. You may wish to try a few other values for niters as well, such as 5000, 50000,
100000, 500000, or even 1000000.

http://www.cs.cmu.edu/~213/activities/lec24.tar


niters microseconds (µs)

3 Using Mutexes to Ensure Mutual Exclusion
Shared state and the consistency issues that arise are unavoidable in multithreaded programming.
To ensure correctness when multiple threads may be accessing the same data or memory at the
same time, programmers use synchronization constructs to enforce mutual exclusion, where only
one thread can be executing a particular critical section of code (usually accessing and/or mutating
shared state) at a time.

5. Where is the critical section in the badcount program?

6. Implement your proposed changes in the file goodcount.c (as provided, a copy of badcount.c)
using the pthread_mutex_t type from the included pthread.h header file.
You can initialize a declared Pthreads mutex with the pthread_mutex_init ($ man pthread_mutex_init)
function, where the attr argument should be 0 or NULL to indicate default mutex initializa-
tion settings. The functions pthread_mutex_lock and pthread_mutex_unlock will also be
useful.
Did this fix the problem? Briefly explain why.

7. Run your fixed program with the values of niters you tried in question 4. Is there a perfor-
mance penalty? If so, how severe is it? If not, why not? You can copy over your times from
question 4 into the table below to compare badcount and your revised goodcount.

2



niters badcount microseconds (µs) pthread_mutex_t microseconds (µs)

4 (Advanced) Using Semaphores to Ensure Mutual Exclusion
The synchronization construct we will now learn about is called the semaphore, invented by Dutch
computer scientist Edsger Dijkstra in the 1960s. A semaphore, in the most basic terms, is a counter,
initialized to some starting (almost always positive) value. There are two operations for interacting
with a semaphore: P and V 1. The P operation waits until a semaphore’s value is positive, then
decrements the semaphore, while the V operation increments a semaphore’s value.
A binary semaphore (that is, a semaphore initialized to 1 and which will always either take the

value 0 or 1) is equivalent to a mutex, as we will see in this section. The next lectures will cover
more sophisticated situations and applications of semaphores, such as the producer-consumer and
the readers-writers problem.

8. Describe how you would use semaphores to protect the shared count variable in the badcount
program. With what value would you initialize the semaphore? Where would you put P and
V operations?

9. Implement your proposed changes in the file goodcount.c (as provided, a copy of badcount.c)
using the sem_t type from the included semaphore.h header file.
You can initialize a declared semaphore with the void sem_init(sem_t *sem, int pshared,
unsigned int value) function, where the pshared argument should be 0 to indicate that the
semaphore is to be shared between threads and not processes. The functions void P(sem_t
*sem) and void V(sem_t *sem) will also be useful.
Did this fix the problem? Briefly explain why.

1P is often said to stand for proberen (Dutch for “to test” or “to try”), while V is often said to stand for verhogen
(Dutch for “to increase”). See https://en.wikipedia.org/wiki/Semaphore_%28programming%29#Operation_
names for more information.

3

https://en.wikipedia.org/wiki/Semaphore_%28programming%29#Operation_names
https://en.wikipedia.org/wiki/Semaphore_%28programming%29#Operation_names


10. Run your revised program with the values of niters you tried in questions 4 and 7. Do
semaphores carry a performance penalty? Is the penalty more, less, or just as severe as when
using mutexes? Take a guess as to why that might be the case. You can copy over your times
from question 4 and 7 into the table below to compare badcount and your two versions of
goodcount.
niters badcount microseconds (µs) pthread_mutex_t microseconds (µs) sem_t microseconds (µs)

4


	Getting Started
	Sharing and Mutual Exclusion
	Using Mutexes to Ensure Mutual Exclusion
	(Advanced) Using Semaphores to Ensure Mutual Exclusion

