
Lecture 17: Virtual Memory Concepts 15-213/15-513/14-513 Fall 2022

Learning Objectives

• Understand the distinction between virtual and physical addresses. Understand
which type of address is visible to processes.

• Describe page faults and give at least two situations where one might occur.

• Compare and contrast pages with cache lines.

• Describe what the OS does to programs that perform invalid memory accesses.

Getting Started

The directions for today’s activity are on this sheet, but they refer to programs that
you’ll need to download. To get set up, run these commands on a shark machine:

$ wget http://www.cs.cmu.edu/~213/activities/vm-concepts.tar
$ tar xf vm-concepts.tar
$ cd vm-concepts

1 Memory Addresses: A Lie

Examine the file addrs.c using your editor of choice, or the less command.
Notice that this program prints the addresses of several different kinds of variables

and one function. Then it uses the fork system call to create a new process, which
also prints the addresses of all the same things. Finally it waits for the child process to
finish, using the waitpid system call. If you aren’t familiar with these functions, you
can use the man command to read up on what they do: type man fork to display the
documentation for fork. (This works for any C library function.)

Once you’re comfortable with the program, compile it and run it:

$ make addrs
$ ./addrs

Problem 1. What do you notice about the addresses printed by the two processes?
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Problem 2. Do you think the processes share the same memory? Explain why this
either must be or cannot be the case.

Now read the program large.c. It uses the sysinfo system call to report how much
RAM the computer has, and then it uses the mmap system call to allocate as much of
this memory as possible. It can, optionally, read from or write to each “page” of each
allocation.

Problem 3. Compile this program (make large) and run it with no arguments
(./large). Do you notice something odd happening?

Problem 4. Now run this program in “read” mode (./large read). What happens?
How is that different from what happened before?

Problem 5. Finally, run this program in “write” mode (./large write). What
happens? How is that different from what happened before?

Problem 6. What do you think is going on here?
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2 Memory Addresses: Timings

We just saw that a memory address in one process usually refers to a different byte
of RAM than the same memory address in a different process. This is called virtual
addressing. It’s an essential safety feature—it guarantees that one program cannot
scribble on another program’s memory!

We also just saw that the system calls that allocate RAM (sbrk and mmap) might be
“lazy” and not actually allocate any memory until it is used. This means the operating
system can tell when freshly-allocated memory is first used.

These features have some performance overhead. Let’s try to measure this overhead.
Examine the program timings.c, which allocates zero-initialized 100 KB memory
regions using two different approaches, then performs a series of writes to each, and
measures the time these operations take using a helper function from benchmark.h.
When you are ready, build and run it.

Problem 7. Both calloc and mmap allocate a block of zero-initialized memory. Which
call takes less time?

Problem 8. Which memory region is faster for the application to access, the first time
it does this?

Problem 9. Which memory region is faster for the application to access, the second
time it does this?

Problem 10. What do these things imply about the work being done by calloc versus
mmap?

Problem 11. Could cache misses alone account for this time difference?
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3 Virtual Memory: Page Faults

The memory addresses we’ve always worked with are known as virtual addresses. As
we have seen, these are different from the physical addresses that actually index the
RAM. The operating system maintains a mapping from virtual to physical addresses
for each process.

This mapping does not have to be complete. Some virtual addresses might not
correspond to any physical address. If a program tries to access a virtual address that
has no corresponding physical address, the CPU will trigger a special mechanism
called a page fault that allows the operating system to intervene. (We’ll talk more about
this mechanism on Thursday.) One of the things the OS can do when a page fault
happens is create a mapping for the virtual address and then allow the program to
retry the memory access.

Unix allows programs to monitor how many times page faults have happened, and
new mappings have been created, because of their memory accesses.

Read faults.c, a slightly modified version of timings.c. It reports page faults
instead of timing, using a different helper function from benchmark.h. Build and run
the program when you’re ready.

Problem 12. Which allocation call results in more page faults?

Problem 13. Which memory region incurs more page faults upon initial access?

Problem 14. Compare the numbers you get from faultswith the numbers you get
from timings. Do the different numbers of page faults explain the different timings?
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4 Virtual Memory: Anatomy of an Address

The phenomenon we have just observed—page faults occurring when freshly allocated
memory is accessed—is a deliberate operating system design decision known as demand
paging. Operating systems that implement demand paging wait until freshly allocated
memory is first accessed to define a virtual-to-physical mapping for it. This allows
them to avoid defining mappings for any memory that is not actually used. Many
programs (such as large.c) allocate far more memory than they use; demand paging
means they only consume the physical RAM they really need.

We keep using the term “page.” A page is a fixed-size set of virtual addresses that
are all mapped to physical addresses as a unit. This is similar to how the memory
cache divides memory into blocks. Just like how addresses are divided into cache tag,
set index, and block offset, they are also divided into a page number and a page offset.1

The page number says which page the address belongs to, and therefore which region
of physical RAM it is mapped to. The page offset indicates a specific byte within that
page.

Because the operating system on the sharks uses demand paging, if we use mmap
to allocate some memory, and then access it byte by byte and watch for page faults,
we can discover the size of a page, and therefore how many bits of an address are the
page offset. Familiarize yourself with bounds.c, a program that does this, then build
and run it.

Problem 15. Looking at the output, how large is each page? How does this compare
to the size of a cache line (64 B)?

Problem 16. Below is a diagram of the 64 bits of a virtual memory address. Bit 0 is the
least significant bit. Label this diagram to show which bits are part of the page offset
and which are part of the page number.

04812162024283236404448525660

1The virtual memory system does not have any equivalent of a set index. As we will see later on, this
is because the virtual memory system can be thought of as a fully associative cache.
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5 Virtual Memory: Program Misbehavior

Sometimes programs access memory addresses they shouldn’t. For instance, consider
the program invalid.c, which has a bug. Compile it and run it—but run it under gdb.

Problem 17. What happens when you run it? Which array index is the problem?

Problem 18. What is special about the address of this array (non-)element? (Hint:
mmap always returns page-aligned allocations.)

Problem 19. As you’ve probably already experienced, the OS cannot always detect
out-of-bounds memory accesses. There are at least two ways you could change this
program that would make it appear to run normally but would not actually fix the bug.
Can you think of them?
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6 Virtual Memory: Protection

Even if a page of memory is mapped, the program might not be allowed to do just
anything to that memory. The hardware maintains protection bits for each mapped
page which define what operations are allowed on that page. You may have noticed
that all the example programs so far passed an argument PROT_READ|PROT_WRITE to
mmap—this asks for memory that is both readable and writable. There are several other
possibilities.

Examine the program protected.c. It allocates some memory, reads from it, copies
a function into it, and tries to execute the code from its new location. You can control
how it allocates the memory with command line arguments. Try running it with each
of these arguments (one at a time): "", r, rw, and rwx.

Problem 20. Now that you’ve seen the reasons the OS might have to intervene in the
middle of a memory access, complete this summary table by marking which categories
of memory access (not allocation call) cause each of the listed outcomes. The first row
has been done for you.

Valid access Invalid access Outcomecalloc()’d mmap()’d Unallocated page Protection bits
x x Segfault

Page fault
No OS involvement

OS maps page
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