
Lecture 18: Virtual Memory Details 15-213/15-513/14-513 Fall 2022

Introduction

This activity will help you understand the details of address translation and memory
mapping in a virtual memory system.

1. Address Translation Concepts

Problems: 7 / Allocated Time: 10 minutes
This flowchart illustrates the steps required to read a value from memory on a

system with virtual memory.

CPU sends virtual
address to MMU

MMU fetches PTE
from page table

MMU checks
page presence

MMU sends physical
address to cache

Cache sends
data to CPU

MMU triggers
page fault

OS checks for
valid mapping

OS evicts victim
page if necessary

OS loads referenced
page from disk and
updates page table

OS restarts
faulting instruction

OS terminates
malfunctioning process

absent

invalid

The problems in this section discuss the details of these steps.

Solutions 1/5



VM Details

Problem 1. For a simple system with a one-level page table, what sub-steps does the
MMU take when it fetches a PTE from a page table? (Hint: think about how to split
up the address in order to look for an entry in the page table.)

Given N = 2n addresses in the virtual address space, M = 2m addresses in the
physical address space, and P = 2p the page size in bytes, the VPN is defined by the
leftmost n− p bits of the address. In a system with a one-level page table, the VPN can
be used directly as an array index in the page table.

Problem 2. The MMU must know the physical address of the page table in order to
read page table entries from memory. Why does it need a physical address?

If the MMU knew only a virtual address for the page table then, in order to read
from the page table, it would first need to look up the physical address of the page
table, in the page table, . . .

Problem 3. Why are one-level page tables impractical? How do multi-level page
tables fix this problem?

In typical systems, a single-level page table covering the entire address space would
be impractically large. For instance, with a page size of 4KB (212 bytes), a 48-bit address
space, and an 8-byte PTE, a single-level page table would occupy 512 GB, which is
more memory than most computers have.

A multi-level page table takes advantage of the fact that, in a typical virtual address
space, most of the addresses are not mapped to physical addresses (we say the mapping
is sparse.) A multi-level table can represent large regions of unmapped addresses
with a single “no mapping” entry in an upper level of the table, rather than having
individual “no mapping” PTEs for every page in the region.

Problem 4. Why might an MMU take longer to look up addresses that are mapped in
a multi-level page table than the equivalent one-level page table?

A k-level page table requires k memory loads, in order to determine the physical
address. There is no spatial locality to these loads.

Problem 5. What is the Translation Lookaside Buffer (TLB) and what problem is it
intended to solve? At what point in the process of fetching PTEs is the TLB used?

The TLB is a small set-associative cache dedicated to storing mappings from virtual
to physical addresses. It mitigates the cost of lookups in a multi-level page table. The
MMU consults the TLB for each address as its first action; if there is a TLB hit, it does
not need to fetch anything from the page table.

Problem 6. When does a page fault happen? What does the page fault handler do
when it is called?

Solutions 2/5



VM Details

The MMU triggers a page fault whenever the CPU tries to access a virtual address
that is marked “not present” in the page table. The page fault handler will determine
why the page is not present. If it never existed at all, the process is malfunctioning and
will be terminated. But if the page has been swapped out or has not yet been loaded
or created, then the handler will find a physical page to assign to that virtual address
(evicting other data if necessary), fill it with the appropriate data, update the page
tables, and resume execution.

Problem 7. How does virtual memory interact with the memory cache(s)?

The purpose of memory caching is to speed up access to whatever data is most
frequently used. In a block diagram of the computer, the MMU sits “in between” the
CPU and the memory cache(s), which work only with physical addresses. This means
that data from multiple processes may coexist in the cache (or compete for cache
space).

2. TLB Practice

Questions: 1 / Allocated Time: 7 minutes

Problem 8. Assume a system with a two-way set-associative TLB, with a total of eight
entries. Virtual and physical addresses are both 16 bits, and pages are 28 bytes each.

At some point in a program’s execution, the contents of the TLB are as follows:

Index Tag PPN Valid

0 0x13 0x30 1
0 0x34 0x58 0
1 0x1F 0x80 0
1 0x2A 0x72 1
2 0x1F 0x95 1
2 0x20 0xAA 0
3 0x3F 0x20 1
3 0x3E 0xFF 0

Based on the contents of the TLB, fill in the following table of virtual to physical
address mappings. If you don’t have enough information to fill a cell, write “?” in
that cell.

Solutions 3/5



VM Details

Virtual address Physical address

0x7E85 0x9585

0xD301 ?

0x4C20 0x3020

0xD040 ?

? 0x5830

Seehttp://www.cs.cmu.edu/afs/cs/academic/class/15213-m19/www/activities/
213_lecture18-sol.pdf for additional guidance.

3. Memory Mapping

Questions: 2 / Allocated Time: 7 minutes

Problem 9. Describe two different things that can provide the “backing store” for a
region of virtual memory, and explain what the page fault handler does the first time a
page of memory with those types of backing store is accessed.

The most common two types of backing store are files on disk and the swap space
(which is also on disk, but not associated with any named file; it’s the equivalent of
scratch paper).

Whenever a page of memory is first accessed, the page fault handler fills that page
with initial data. For pages backed by a file, the initial data comes from the file’s
contents. For pages backed by swap space, the initial data is all bytes zero.

Problem 10. Each process has its own, private virtual address space. However, some
parts of the address space might be shared with other processes—that is, mapped to the
same physical addresses in all the processes that share that region. Give an example
of when this happens and explain why it might improve overall system performance.

One common situation where a region of the address space is shared among processes
is when several processes all map a region to the same file. For instance, they might all
use the same dynamic library. This may improve system performance because there
only needs to be one copy of the file in memory no matter how many processes are
referring to it.

Solutions 4/5

http://www.cs.cmu.edu/afs/cs/academic/class/15213-m19/www/activities/213_lecture18-sol.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15213-m19/www/activities/213_lecture18-sol.pdf


VM Details

A. Appendix: Address Translation Symbol Reference

• Basic parameters

– N = 2n : Number of addresses in virtual address space

– M = 2m : Number of addresses in physical address space

– P = 2p : Page size (bytes)

• Components of the virtual address (VA)

– VPO: Virtual page offset

– VPN: Virtual page number

– TLBI: TLB index

– TLBT: TLB tag

• Components of the physical address (PA)

– PPO: Physical page offset (same as VPO)

– PPN: Physical page number

– CO: Byte offset within cache line

– CI: Cache index

– CT: Cache tag

Solutions 5/5


	Address Translation Concepts
	TLB Practice
	Memory Mapping
	Appendix: Address Translation Symbol Reference

