
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The course that gives CMU its “Zip”! 

Course Overview

15-213/14-513/15-513: 
Introduction to Computer Systems
1st Lecture, August 30, 2022 Instructors:

Dave Andersen (15-213)

Brian Railing (15-513)

David Varodayan (14-513)

Zack Weinberg (15-213)



2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

 Introductions

 Big Picture

▪ Course theme

▪ Five realities

▪ How the course fits into the CS/ECE/INI curriculum

 Academic integrity

 Logistics and Policies



3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Instructors

15-213

Brian Railing

15-513 14-513

David Varodayan

Dave Andersen Zack Weinberg



4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Big Picture



5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme: 
(Systems) Knowledge is Power!
 Systems Knowledge

▪ How hardware (processors, memories, disk drives, network infrastructure) 
plus software (operating systems, compilers, libraries, network protocols) 
combine to support the execution of application programs

▪ How you as a programmer can best use these resources

 Useful outcomes from taking 213/513

▪ Become more effective programmers

▪ Able to find and eliminate bugs efficiently

▪ Able to understand and tune for program performance

▪ Prepare for later “systems” classes in CS & ECE

▪ Compilers, Operating Systems, Networks, Computer Architecture, 
Embedded Systems, Storage Systems, etc.



6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

It’s Important to Understand How Things Work

 Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

 Most CS and CE courses emphasize abstraction
▪ Abstract data types

▪ Asymptotic analysis

 These abstractions have limits

▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or 
performance you need



7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1: 
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

▪ Float’s: Yes!

▪ Int’s:

▪ 40000 * 40000 --> 1600000000

▪ 50000 * 50000 --> ?

 Example 2: Is (x + y) + z =  x + (y + z)?
▪ Unsigned & Signed Int’s: Yes!

▪ Float’s:

▪ (1e20 + -1e20) + 3.14 --> 3.14

▪ 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571



8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

▪ Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
▪ Due to finiteness of representations

▪ Integer operations satisfy “ring” properties

▪ Commutativity, associativity, distributivity

▪ Floating point operations satisfy “ordering” properties

▪ Monotonicity, values of signs

 Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers



9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2: 
You’ve Got to Know Assembly

 Chances are, you’ll never write programs in assembly
▪ Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution 
model
▪ Behavior of programs in presence of bugs

▪ High-level language models break down

▪ Tuning program performance

▪ Understand optimizations done / not done by the compiler

▪ Understanding sources of program inefficiency

▪ Implementing system software

▪ Compiler has machine code as target

▪ Operating systems must manage process state

▪ Creating / fighting malware

▪ x86 assembly is the language of choice!



10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

▪ It must be allocated and managed

▪ Many applications are memory dominated

 Memory referencing bugs especially pernicious
▪ Effects are distant in both time and space

 Memory performance is not uniform

▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major 
speed improvements



11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

▪ Result is system specific

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

typedef struct {

int a[2];

double d;

} struct_t;

double fun(int i) {

volatile struct_t s;

s.d = 3.14;

s.a[i] = 1073741824; /* Possibly out of bounds */

return s.d;

}



12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {

int a[2];

double d;

} struct_t;

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

Location accessed by 

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t



13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

▪ Out of bounds array references

▪ Invalid pointer values

▪ Abuses of malloc/free

 Can lead to nasty bugs

▪ Whether or not bug has any effect depends on system and compiler

▪ Action at a distance

▪ Corrupted object logically unrelated to one being accessed

▪ Effect of bug may be first observed long after it is generated

 How can I deal with this?
▪ Program in Java, Ruby, Python, ML, …

▪ Understand what possible interactions may occur

▪ Use or develop tools to detect referencing errors (e.g. Valgrind)



14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to 
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels: algorithm, data representations, 
procedures, and loops

 Must understand system to optimize performance
▪ How programs compiled and executed

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and 
generality



15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

▪ Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell



16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why The Performance Differs

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t 

(M
B

/s
)

Stride (x8 bytes)

copyij

copyji



17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

▪ I/O system critical to program reliability and performance

 They communicate with each other over networks
▪ Many system-level issues arise in presence of network

▪ Concurrent operations by autonomous processes

▪ Coping with unreliable media

▪ Cross platform compatibility

▪ Complex performance issues



18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

▪ Computer Architecture

▪ Design pipelined processor in Verilog

▪ Operating Systems

▪ Implement sample portions of operating system

▪ Compilers

▪ Write compiler for simple language

▪ Networking

▪ Implement and simulate network protocols



19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective 
as a programmer

▪ Enable you to

▪ Write programs that are more reliable and efficient

▪ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

▪ Cover material in this course that you won’t see elsewhere

▪ Not just a course for dedicated hackers

▪ We bring out the hidden hacker in everyone!



20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum CS 122
Imperative
Programming

Foundation of Computer Systems
Underlying principles for hardware, 
software, and networking

CS Systems
• 15-319 Cloud Computing
• 15-330 Computer Security
• 15-410 Operating Systems
• 15-411 Compiler Design
• 15-415 Database Applications
• 15-418 Parallel Computing
• 15-440 Distributed Systems
• 15-441 Computer Networks
• 15-445 Database Systems

ECE Systems
• 18-330 Computer Security
• 18-349 Intro to Embedded Systems
• 18-441 Computer Networks
• 18-447 Computer Architecture
• 18-452 Wireless Networking
• 18-451 Cyberphysical Systems

CS Graphics
• 15-462 Computer Graphics
• 15-463 Comp. Photography

213/513



22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Academic Integrity
Please pay close attention, especially 
if this is your first semester at CMU



23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

 Unauthorized use of information

▪ Borrowing code: by copying, retyping, looking at a file

▪ Describing: verbal description of code from one person to another

▪ Even if you just describe/discuss how to put together CS:APP code 
snippets to solve the problem

▪ Searching the Web for solutions, discussions, tutorials, blogs, other 
universities’ 213 instances,…  in English or any other language

▪ Copying code from a previous course or online solution

▪ Reusing your code from a previous semester (here or elsewhere)

▪ If you take the course this semester, all work has to be done this 
semester (unless you have special permission from the instructors)

▪ Using AI to generate your code (e.g., GitHub CoPilot)



24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description (cont.)

 Unauthorized supplying of information

▪ Providing copy: Giving a copy of a file to someone

▪ Providing access:

▪ Putting material in unprotected directory

▪ Putting material in unprotected code repository (e.g., Github)

– Or, letting protections expire

▪ Applies to this term and the future

▪ There is no statute of limitations for academic integrity violations

 Collaborations beyond high-level, strategic advice
▪ Anything more than block diagram or a few words

▪ Code / pseudo-code is NOT high level

▪ Coaching, arranging blocks of allowed code is NOT high level

▪ Code-level debugging is NOT high level



25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

 What is NOT cheating?

▪ Explaining how to use systems or tools

▪ Helping others with high-level design issues
High means VERY high

▪ Using code supplied by us

▪ Using code from the CS:APP web site

▪ Using books from the library, Unix manpages, other published material

▪ Except the “Solutions Manual for CS:APP”

▪ Using general online references

▪ OK: The GNU C Library Manual, Beej’s Guide to C, cplusplus.com

▪ Not OK: searching for “213 malloc solution”

https://www.gnu.org/software/libc/manual/html_node/index.html
https://beej.us/guide/bgc/
https://cplusplus.com/


26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Attribution

 If you copy code (that you’re allowed to copy),
you MUST credit the author

▪ Starter code: No

▪ Any other allowed code (course, CS:APP, etc): Yes

▪ Indicate source, beginning, and end

 Here’s what it should look like:

/** Hash a 4-byte integer.
*  This is the “6 shifts” function from
*  https://burtleburtle.net/bob/hash/integer.html
*  (second from the top on that page)
*/
uint32_t hash( uint32_t a)
{

a = (a+0x7ed55d16) + (a<<12);
// ...

}

https://burtleburtle.net/bob/hash/integer.html


27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
 Penalty for cheating:

▪ Best case: -100% for assignment

▪ You would be better off to turn in nothing
▪ Worst case: Removal from course with failing grade

▪ This is the default

▪ Permanent mark on your record

▪ Loss of respect by you, the instructors and your colleagues

▪ If you do cheat – come clean asap!

 Detection of cheating:
▪ We have sophisticated tools for detecting code plagiarism

▪ In Fall 2015, 20 students were caught cheating and failed the course. 

▪ Some were expelled from the University

▪ In January 2016, 11 students were penalized for cheating violations that occurred as far back as 
Spring 2014.

▪ In May 2019, we gave an AIV to a student who took the course in Fall 2018 for unauthorized 
coaching of a Spring 2019 student.  His grade was changed retroactively.

 Don’t do it!
▪ Manage your time carefully

▪ Ask the staff for help when you get stuck



28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating Notes

 We have written over 100 letters for cheating cases

▪ Don’t add to this total

▪ Some have been for years earlier

 Your work is sophisticated enough that there are many 
different solutions

▪ Things that look the same are very suspicious

▪ If you do your own work and commit regularly, your work is unique

 We use PhD-level research to detect similarities

▪ Inputs include: multiple tools, online searches, past semester submissions



29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Concrete Examples:
 This is Cheating:

▪ Searching the internet with the phrase 15-213, 15213, 213, 18213, 513, 
malloclab, etc.

▪ That’s right, just entering it in a search engine

▪ Looking at someone’s code on the computer next to yours

▪ Giving your code to someone else, now or in the future

▪ Posting your code in a publicly accessible place on the Internet, now or in 
the future

▪ Hacking the course infrastructure

 This is OK (and encouraged):

▪ Googling a man page for fputs

▪ Asking a friend for help with gdb

▪ Asking a TA or course instructor for help, showing them your code, …

▪ Looking in the textbook for a code example

▪ Talking about a (high-level) approach to the lab with a classmate



30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

 Fred is desperate.  He can’t get his code to work and the deadline is drawing 
near.  In panic and frustration, he searches the web and finds a solution 
posted by a student at U. Oklahoma on Github.  He carefully strips out the 
comments and inserts his own.  He changes the names of the variables and 
functions.  Phew!  Got it done!

 The course staff run checking tools that compare all submitted solutions to 
the solutions from this and other semesters, along with ones that are on the 
Web.

▪ Remember: We are as good at web searching as you are

 Meanwhile, Fred has had an uneasy feeling: Will I get away with it?  Why 
does my conscience bother me?

 Fred gets email from an instructor: “Please see me tomorrow at 9:30 am.”

▪ Fred does not sleep well that night



31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

 The instructor feels frustrated.  His job is to help students learn, not to be 
police.  Every hour he spends looking at code for cheating is time that he 
cannot spend providing help to students.  But, these cases can’t be 
overlooked

 At the meeting:

▪ Instructor: “Explain why your code looks so much like the code on Github.”

▪ Fred: “Gee, I don’t know.  I guess all solutions look pretty much alike.”

▪ Instructor: “I don’t believe you.  I am going to file an academic integrity violation.”

▪ Fred will have the right to appeal, but the instructor does not need him to admit 
his guilt in order to penalize him.

 Consequences

▪ Fred may (most likely) will be given a failing grade for the course

▪ Fred will be reported to the university

▪ A second AIV will lead to a disciplinary hearing

▪ Fred will go through the rest of his life carrying a burden of shame

▪ The instructor will experience a combination of betrayal and distress



32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why It’s a Big Deal

 This material is best learned by doing

▪ Even though that can, at times, be difficult and frustrating

▪ Starting with a copy of a program and then tweaking it is very different 
from writing from scratch

▪ Planning, designing, organizing a program are important skills

 We are the gateway to other system courses

▪ Want to make sure everyone completing the course has mastered the 
material

 Industry appreciates the value of this course
▪ We want to make sure anyone claiming to have taken the course is 

prepared for the real world

 Working in teams and collaboration is an important skill

▪ But only if team members have solid foundations

▪ This course is about foundations, not teamwork



33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A Scenario: Cheating or Not?
Alice is working on malloc lab and is just plain stuck.  Her code is 
seg faulting and she doesn't know why.  It is only 2 days until 
malloc lab is due and she has 3 other assignments due this same 
week.  She is in the cluster.

Bob is sitting next to her.  He is pretty much done.

Sitting next to Bob is Charlie.  He is also stuck.

 1. Charlie gets up for a break and Bob makes a printout of his own 
code and leaves it on Charlie’s chair.

▪ Who cheated: Charlie?       Bob?

 2. Charlie finds the copy of Bob’s malloc code, looks it over, and 
then copies one function, but changes the names of all the 
variables.
▪ Who cheated: Charlie?       Bob?



34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Another Scenario
Alice is working on malloc lab and is just plain stuck.  Her code is seg faulting and 
she doesn't know why.  It is only 2 days until malloc lab is due and she has 3 
other assignments due this same week.  She is in the cluster.

Bob is sitting next to her.  He is pretty much done.

Sitting next to Bob is Charlie.  He is also stuck.

 1. Bob offers to help Alice and they go over her code together.

▪ Who cheated: Bob?       Alice?

 2. Bob gets up to go to the bathroom and Charlie looks over at his 
screen to see how Bob implemented his free list.

▪ Who cheated: Charlie?       Bob?



35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Another Scenario (cont.)
 3. Alice is having trouble with GDB.  She asks Bob how to set a 

breakpoint, and he shows her.

▪ Who cheated: Bob?       Alice?

 4. Charlie goes to a TA and asks for help

▪ Who cheated: Charlie?       

 If you are uncertain which of these constitutes cheating, and 
which do not, please read the syllabus carefully.  If you’re still 
uncertain, ask one of the staff



36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Version Control: Your Good Friend
 Starting with cache lab, labs will be distributed via

GitHub Classroom

 Must be used by all students

 Students must commit early and often

 If a student is accused of cheating (plagiarism), we will consult
the GIT server and look for a reasonable commit history

 Missing GIT history will count against you

 Please make sure you have one!

 Note: Posting your work for this class in a public Git repo (on your 
personal GitHub account, for instance) is considered an AIV
▪ You’re making it too easy for other people to copy from you

▪ Use a private repo shared with specific people if you want to e.g. show your 
work to a potential employer



37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How to Avoid AIVs

 Start early

 Don’t rely on marathon programming sessions

▪ Your brain works better in small bursts of activity

▪ Ideas / solutions will come to mind while you’re doing other things

 Plan for stumbling blocks
▪ Assignment is harder than you expected

▪ Code doesn’t work

▪ Bugs hard to track down

▪ Life gets in the way

▪ Minor health issues

▪ Unanticipated events



38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Logistics



39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Education research in this course 

 We (faculty) use this course as a basis for formal research 
studies into how we can teach more effectively.

 Nothing we do for research purposes will affect your grade.

 You have the right to request to be excluded from the studies.

 Prof. Railing is here to give more detail.



40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

A slide I wish I didn’t have to show you 

 You are formally requested (but not required) to wear a mask in 
this classroom.

▪ I think you should be wearing a mask whenever you’re indoors and not alone.

▪ It needs to cover your nose (or else it does no good).

Mask requirements lifted
Source: 

https://tableau.alleghenycounty.us/t/PublicSite/vie
ws/COVID-19Summary_16222279737570/COVID-

19Summary?%3Aembed=y&%3AisGuestRedirectFro
mVizportal=y

https://tableau.alleghenycounty.us/t/PublicSite/views/COVID-19Summary_16222279737570/COVID-19Summary?%3Aembed=y&%3AisGuestRedirectFromVizportal=y


41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

15-213, 14-513, 15-513, 18-213, 18-613
 15-213

▪ CS Undergraduates and other Undergraduates

▪ In-class lectures in DH 2315 (with in-class quizzes)

 14-513

▪ INI Masters students

▪ In-class lectures in CIC 1201 (with in-class quizzes)

 15-513

▪ CS Masters and other Masters students

▪ Watch recorded lectures (no in-class quizzes)

 18-213

▪ ECE Undergraduates

▪ In-class lectures in DH A302 (with in-class quizzes)

 18-613

▪ ECE Masters students

▪ In-class lectures in HOA 160 / B23 110 (with in-class quizzes)

 Same material & labs for all the courses

15-cohort 
(for TAs, office 

hours, etc)

18-cohort 
(for TAs, office 

hours, etc)



42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Primary Textbook

 Randal E. Bryant and David R. O’Hallaron, 

▪ Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e), 
Pearson, 2016

▪ https://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback/international version!)

▪ On reserve in Sorrells Library

 Note: All textbooks have errors

▪ Don’t panic if you see something that seems wrong

▪ Come talk to us about it if you can’t make it make sense

https://csapp.cs.cmu.edu/


43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recommended reading

 Brian Kernighan and Dennis Ritchie, 

▪ The C Programming Language, Second Edition, Prentice Hall, 1988

▪ Everyone calls this book “K&R”

▪ Guide to C by the designers of the language

▪ Well-written, concise

▪ A little dated

▪ Doesn’t cover additions to C since 1988 (that’s thirty years ago…)

▪ Casual about issues we consider serious problems now

▪ On reserve in Sorrells Library



44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

If you want more books about C

 C for Programmers with an introduction to C11
▪ Paul and Harvey Deitel
▪ Opposite of K&R: modern, verbose

▪ Lots of worked-out examples

▪ Ugly code style (compare readability to K&R)

 21st Century C
▪ Ben Klemens

▪ Supplement to full C textbooks: goes into the corners of the language

▪ Opinionated
▪ First half is about how to build C programs in the Unix environment

▪ So, if you want to understand the Makefiles we give you…

 Learn C the Hard Way
▪ Zed A. Shaw
▪ Extremely opinionated

▪ Also has lots of worked-out examples

▪ Only book I can find that takes “undefined behavior” seriously enough

 These books are not on reserve
▪ The library may still have them, or you can borrow a copy from Weinberg



45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
 Lectures 

▪ Higher level concepts

▪ In-class quizzes (except 15-513) could tilt you to a higher grade if borderline

▪ New this semester: more involved in-class activities for some lectures

 Labs (8)
▪ 1-2+ weeks each

▪ Provide in-depth understanding of an aspect of systems

▪ Programming and measurement

 Written Assignments (best 10 of 12)
▪ Reinforce concepts

▪ You earn 1/4 of score by grading your peers’ work according to our rubric

▪ Due Wednesdays at 11:59pm ET with peer grades due the next Wednesday

 Final Exam
▪ Test your understanding of concepts & mathematical principles

▪ Covers content from the whole semester



46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

 Topics

▪ Bit operations, arithmetic, assembly language programs

▪ Representation of C control and data structures

▪ Includes aspects of architecture and compilers 

 Assignments

▪ L0 (C programming Lab): Test/refresh your C programming abilities

▪ L1 (datalab): Manipulating bits

▪ L2 (bomblab): Defusing a binary bomb

▪ L3 (attacklab): The basics of code injection attacks



47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

 Topics

▪ Memory technology, memory hierarchy, caches, disks, locality

▪ Includes aspects of architecture and OS

 Assignments

▪ L4 (cachelab): Building a cache simulator and optimizing for locality.

▪ Learn how to exploit locality in your programs. 



48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Topics

▪ Virtual memory, address translation, dynamic storage allocation

▪ Includes aspects of architecture and OS

 Assignments
▪ L5 (malloclab): Writing your own malloc package

▪ Get a real feel for systems-level programming



49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

 Topics

▪ Hardware exceptions, processes, process control, Unix signals, 
nonlocal jumps

▪ Includes aspects of compilers, OS, and architecture

 Assignments

▪ L6 (tshlab): Writing your own Unix shell.

▪ A first introduction to concurrency



50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Networking, and Concurrency

 Topics

▪ High level and low-level I/O, network programming

▪ Internet services, Web servers

▪ concurrency, concurrent server design, threads

▪ I/O multiplexing with select

▪ Includes aspects of networking, OS, and architecture

 Assignments
▪ L7 (proxylab): Writing your own Web proxy

▪ Learn network programming and more about concurrency and 
synchronization. 



51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale 

 Each lab has a well-defined goal such as solving a puzzle or 
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

▪ Set a reasonable threshold for full credit

▪ Post intermediate results (anonymized) on Autolab scoreboard for glory!



52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab0: C Programming

 You can start now: see 213 schedule page

 It should all be review:

▪ Basic C control flow, syntax, etc.

▪ Explicit memory management, as required in C. 

▪ Creating and manipulating pointer-based data structures.

▪ Implementing robust code that operates correctly with invalid arguments, 
including NULL pointers.

▪ Creating rules in a Makefile

 If this lab takes you more than 10 hours, please think hard 
about taking the course.

http://www.cs.cmu.edu/~213/schedule.html


53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Lab

 Work groups

▪ You must work alone on all lab assignments

 Handins

▪ Labs due at 11:59pm ET

▪ Electronic handins using Autolab (no exceptions!)



54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
 Grace days

▪ 5 grace days for the semester

▪ Limit of 0, 1, or 2 grace days per lab used automatically

▪ Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Lateness penalties

▪ Once grace day(s) used up, get penalized 15% per day

▪ No handins later than 3 days after due date

 Catastrophic events
▪ Major illness, death in family, …

▪ Fill in form (link on Piazza) to request more time

▪ Formulate a plan (with your academic advisor) to get back on track

 Advice
▪ Once you start running late, it’s really hard to catch up

▪ Try to save your grace days until the last few labs



55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster

▪ The “shark machines”

▪ linux> ssh shark.ics.cs.cmu.edu

▪ Servers donated by Intel for 213/513

▪ Login using your Andrew ID and password

▪ Storage shared with general-purpose Andrew clusters (AFS)

▪ Please don’t use the general-purpose Andrew clusters for 213 work

▪ They get overloaded

▪ They don’t have the right compilers

▪ You can try to do the labs on your local machine

▪ But it probably doesn’t have the right compilers either

▪ make submit definitely won’t work



56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab (https://autolab.andrew.cmu.edu)

 Labs are provided by the CMU Autolab system

▪ Project page: http://autolab.andrew.cmu.edu

▪ Developed by CMU faculty and students

▪ Key ideas: Autograding and Scoreboards

▪ Autograding: Providing you with instant feedback.

▪ Scoreboards: Real-time, rank-ordered, and  anonymous summary.

▪ Used by over 3,000  students each semester

 With Autolab you can use your Web browser to:

▪ Download the lab materials

▪ Handin your code for autograding by the Autolab server

▪ View the class scoreboard

▪ View the complete history of your code handins, autograded results, 
instructor’s evaluations, and gradebook.

▪ View the TA annotations of your code for Style points.

http://autolab.cs.cmu.edu/


57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Your grade on autolab is your grade for the lab

 Even if you got a better grade on the sharks
▪ Autolab does more stringent tests for some labs

▪ Screenshots can be faked

▪ File timestamps can be faked

 Even if you got a better grade earlier
▪ Don’t submit borderline code over and over

▪ All labs are calibrated so it’s possible to get 100% consistently

 One more reason to do the labs early!



58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab accounts

 Students enrolled on Monday, August 29 have Autolab accounts

 You must be enrolled to get an account

▪ Autolab is not tied into the Hub’s rosters

▪ If you add in, sign up with Google form (check on Piazza)

▪ We will update the autolab accounts once a day, so check back in 24 hours.

 For those who are waiting to add in, the first lab
(C Programming Lab) is available on the Schedule page of the 
course Web site. 



59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Class Web page: 

▪ http://www.cs.cmu.edu/~213 for 15-213/14-513/15-513 

▪ Complete schedule of lectures, exams, and assignments

▪ Copies of lectures, assignments, exams, solutions

▪ FAQ

 Piazza
▪ Best place for questions about assignments

▪ We will fill the FAQ and Piazza with answers to common questions

▪ Be careful about public posts: Remember the AIV policy

 Canvas
▪ Recorded lectures

▪ In-class quizzes

▪ Written assignments

http://www.cs.cmu.edu/~213


60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Email

▪ Send email to individual instructors or TAs only to schedule appointments

 Office hours
▪ TAs: See separate slide for 15-cohort vs. 18-cohort

▪ Instructors: See course home page

 Walk-in Tutoring
▪ Details TBA.  Will put information on class webpage.

 1:1 Appointments

▪ You can schedule 1:1 appointments with any of the teaching staff



61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recitations

 Begin Monday September 12

 You must go to the recitation the registrar put you in

 Check Piazza for Zoom links for first recitation



62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Office Hours

 TA office hours begin Tuesday, Sep. 6 (day after Labor Day)

 Both in-person and remote (Zoom) will be offered

▪ Only one or the other, at any particular time

 Schedule will be posted on Piazza

 TAs can spend only 10 minutes per student

▪ Come prepared – have a specific problem you want to ask about

▪ Need more time? Schedule a 1:1 session, or come to faculty office hours

 Faculty office hours also begin Tuesday, Sep. 6

▪ Schedule will also be posted on Piazza and the course website



63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading

 Final Exam (30%)

 Labs (50%): weighted according to effort

 Written Assignments (20%): drop lowest 2 out of 12
▪ 15/20 points from average of the three scores assigned by the peer graders

▪ 5/20 points for completing the peer reviews with constructive feedback

 In-lecture quizzes and activities are NOT graded
▪ We may look at whether you did the quizzes, for curving only

 Final grades based on a straight scale (90/80/70/60) with a small 
amount of curving
▪ Only upward

▪ No +/- grades are given (university policy)



64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bootcamps

 Bootcamp #1

▪ Linux, the Command Line and Git

▪ TBD, check Piazza for time and zoom link

 Bootcamp #2
▪ Debugging Fundamentals & GDB

▪ See schedule page on the web

 Bootcamp #3
▪ GCC & Build Automation (makefiles)

▪ See schedule page on the web

 More bootcamps to be announced for specific labs later

https://www.cs.cmu.edu/~213/schedule.html
https://www.cs.cmu.edu/~213/schedule.html


65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Waitlist questions

 15-213: Mary Widom (marwidom@cs.cmu.edu)

 15-513: Mary Widom (marwidom@cs.cmu.edu)

 14-513: INI Enrollment (ini-academic@andrew.cmu.edu)

 Please don’t contact the instructors with waitlist questions.



66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Managing this course

 Time management is key

▪ Start early.

▪ Office hours are basically empty the first few days an assignment is out.

▪ If you feel pressured, do appropriate risk analysis

 Read the Textbook!

 Come to lecture

 Go to recitation



67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Education research: “Prior Exposure” quiz

 Homework for you:
https://canvas.cmu.edu/courses/30386/quizzes/86863
(goes live at 3pm Pittsburgh time today)

 This quiz assesses how much of 213’s material
you already know

▪ Every question has an “I don’t know” option

▪ Don’t hesitate to pick that option

▪ Don’t spend more than 20 minutes, total, on this quiz

 This quiz will not affect your grade at all

 We’ll go over the answers at the beginning of class on Thursday
▪ Consider it a ‘teaser’ for the rest of the course ;-)

https://canvas.cmu.edu/courses/30386/quizzes/86863


68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Welcome 
and Enjoy! 


