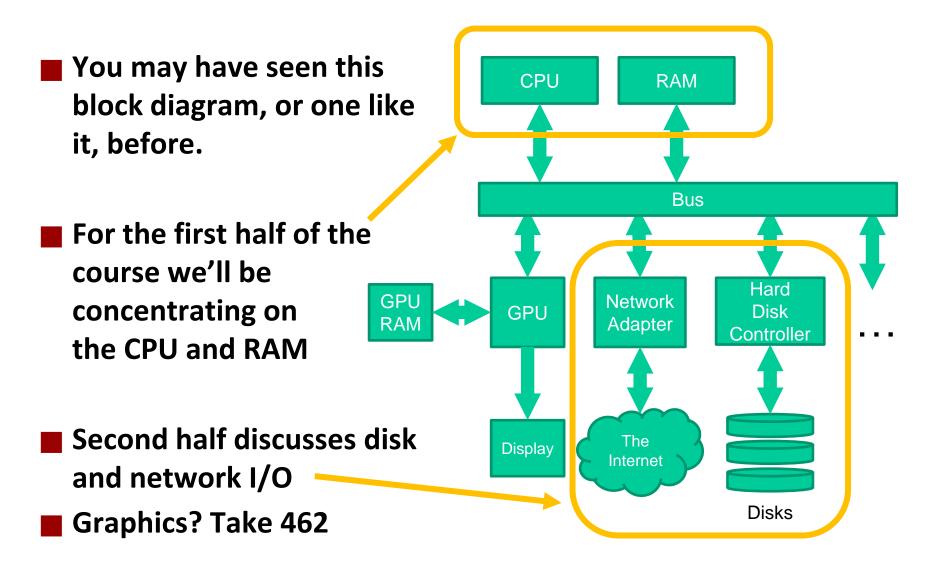
Bits, Bytes and Integers – Part 1

15-213/14-513/15-513: Introduction to Computer Systems 2nd Lecture, September 1, 2022

Instructors:

Dave Andersen (15-213) Zack Weinberg (15-213) Brian Railing (15-513) David Varodayan (14-513)

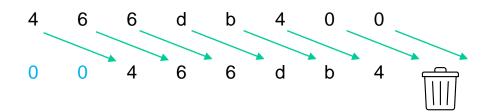
Waitlist questions


- 15-213: Mary Widom (marwidom@cs.cmu.edu)
- 15-513: Mary Widom (marwidom@cs.cmu.edu)
- 14-513: INI Enrollment (ini-academic@andrew.cmu.edu)

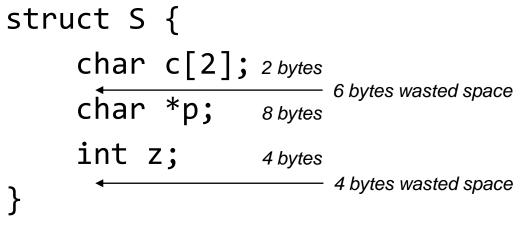
Please don't contact the instructors with waitlist questions.

Reminder: Lab Deadlines

- C Programming Lab: Came out Tuesday, due Sep. 6
- Data Lab: Comes out today, due Sep. 15
- Start early, start often


Roadmap – Inside a Computer

Course Teaser (Things You May Know Already)


What value do you get if you arithmetic right-shift the hexadecimal number 0x466db400 by eight bits?

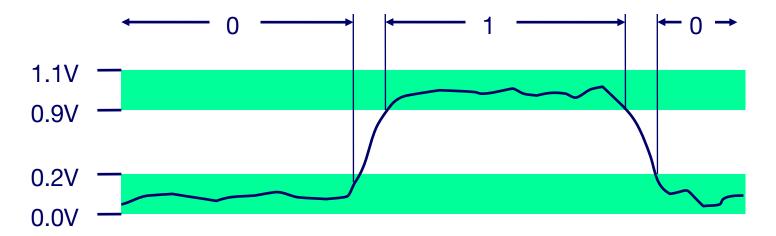
- Hexadecimal is just like decimal ... if you have sixteen fingers.
- "Eight bits" is two hex digits.
- "Arithmetic right shift" is division by a power of two.

Course Teaser (Things You May Know Already)

On an x86-64 machine, how much space does this C struct take? That is, what is the value of sizeof(struct S)?

24 bytes total

Course Teaser (Things You May Know Already)


Today: Bits, Bytes, and Integers

Representing information as bits

- **Bit-level manipulations**
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- **Representations in memory, pointers, strings**

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

Base 2 Number Representation

Represent 15213₁₀ as 11101101101₂

Represent 1.20₁₀ as 1.001100110011[0011]...₂

Represent 1.5213 × 10⁴ as 1.1101101101101₂ × 2¹³

Encoding Byte Values

Byte = 8 bits

- Binary 000000002 to 111111122
- Decimal: 0₁₀ to 255₁₀
- Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

0 1 2 3 4 5 6 7 8	⁺ D ^{el}	cimal Binary 0000
0	0	0000
1	0 1 2 3 4	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6 7	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Preview: Combining bytes...

C Data Type	Typical 32-bit	Typical 64-bit
char	1	1
short	2	2
int	4	4
long	4	8
float	4	4
double	8	8
pointer	4	8

Preview: ... to make integers

	W				
	8	16	32	64	
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615	
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807	
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808	

UMax = 2^w - 1 where w is the number of bits ("word size")
UMin = 0

- **TMax =** $2^{w-1} 1$
- TMin = -2^{w-1}
 - Asymmetric!
 - Because of zero

Activity: binary, hexadecimal, twos complement

https://canvas.cmu.edu/courses/30386/assignments/524495 https://www.cs.cmu.edu/~213/activities/bits-and-bytes.pdf

Form groups of three or four people

- Three is probably easier in this room, since the chairs don't move
- Person in the middle of each group, bring up the PDF in a program that lets you scribble on it
 - If you can't do that, swap chairs with someone in your group who can
- Work through the activity as a group
 - Today, we just go start to finish at your own pace
 - Faculty and TAs will be walking around to help

When you're done, upload your annotated PDF to Canvas