
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers – Part 2

15-213/14-513/15-513: Introduction to Computer Systems
3rd Lecture, September 6, 2022

Instructors:

Dave Andersen (15-213)

Zack Weinberg (15-213)

Brian Railing (15-513)

David Varodayan (14-513)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waitlist questions

⬛ 15-213: Mary Widom (marwidom@cs.cmu.edu)

⬛ 15-513: Mary Widom (marwidom@cs.cmu.edu)

⬛ 14-513: INI Enrollment (ini-academic@andrew.cmu.edu)

⬛Please don’t contact the instructors with waitlist questions.

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminder about labs 0 and 1

⬛ Lab 0 is due today September 6 at 11:59pm
▪ No late days, no grace days

▪ Email instructors if you need an extension

▪ It’s supposed to be easy—if it takes you more than a couple
hours’ effort, you may not be prepared for this course

⬛ Lab 1 (data lab) is out
▪ Due Thursday September 15 at 11:59pm ET

▪ Start early!

▪ Lab 2 (bomb lab) comes out on Thursday September 8

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation and addition

▪ Conversion, casting, extension, truncation

▪ Multiplication, division, shifting

⬛ Byte order in memory, pointers, strings

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: https://canvas.cmu.edu/courses/30386/assignments/525231

Use the “People” section of Canvas to assign yourself to a group.

Do models 0 and 1, then stop.

https://canvas.cmu.edu/courses/30386/assignments/525231

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding “Integers”

Examples (w = 5)

Unsigned Signed (twos complement)

Sign Bit

±16 8 4 2 1

0 1 0 1 0

16 8 4 2 1

1 0 1 1 0

-16 8 4 2 1

0 + 8 + 0 + 2 + 0 =

B2U(𝑥) = ෍

𝑖=0

𝑤−1

𝑥𝑖 ⋅ 2
𝑖

Given a bit

vector 𝑥,

𝑤 bits long…
B2T 𝑥 = −𝑥𝑤−1 ⋅ 2

𝑤−1 + ෍

𝑖=0

𝑤−2

𝑥𝑖 ⋅ 2
𝑖

−16 + 8 + 0 + 2 + 0 =

16 + 8 + 0 + 2 + 0 =

10

26

−10

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negation: Complement & Increment

⬛ Negate through complement and increase
~x + 1 == -x

⬛ Why?
▪ -x + x == 0 (by definition)

▪ ~x + x == 1111…111 == -1

▪ ~x + x + 1 == 0

▪ (~x+1) + x == 0

▪ ~x+1 == -x

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1−1

Example: x = 15213

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complement & Increment Examples

𝒙 = 𝑻𝐦𝐢𝐧

𝒙 = 𝟎

Oops!

It’s still

negative!

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Eight negative

values:

−1, − 2, …, − 8

Eight non-

negative values:

0, 1, …, 7

Mathematicians

would prefer it

if a 4-bit signed

number could

represent values

−8…8, but that’s

24 + 1 values, so

they won’t all fit.

What if we made

a 4-bit signed

number only

represent values

−7…7? Then we

wouldn’t be using
bit pattern 1000…

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

⬛ Standard Addition Function
▪ Ignores carry output

⬛ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+ 1101 0101

E9

+ D5

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

233

+ 213

unsigned char

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

⬛ Standard Addition Function
▪ Ignores carry output

⬛ Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

• • •

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

233

+ 213

446

190

unsigned char

u

v+

u + v

UAddw(u , v)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

⬛Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

⬛ Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

⬛ TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •
u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

⬛ Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

⬛ Wraps Around
▪ If sum  2w–1

▪ Becomes
negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes
positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TAdd Overflow

⬛ Functionality
▪ True sum requires

w+1 bits

▪ Drop off MSB

▪ Treat remaining bits
as 2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation and addition

▪ Conversion, casting, extension, truncation

▪ Multiplication, division, shifting

⬛ Byte order in memory, pointers, strings

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

⬛ Developed by George Boole in 19th Century
▪ Algebraic representation of logic

▪ Encode “True” as 1 and “False” as 0

And

■ A&B = 1 when both A=1 and B=1

Or

■ A|B = 1 when either A=1 or B=1

Not

■ ~A = 1 when A=0

Exclusive-Or (Xor)

■ A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: https://canvas.cmu.edu/courses/30386/assignments/525231

Do model 2, then stop.

https://canvas.cmu.edu/courses/30386/assignments/525231

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

⬛ Operate on Bit Vectors
▪ Operations applied bitwise

⬛ All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

⬛ Representation
▪ Width w bit vector represents subsets of {0, …, w–1}

▪ aj = 1 if j ∈ A

▪ 01101001 { 0, 3, 5, 6 }

▪ 76543210

▪ 01010101 { 0, 2, 4, 6 }

▪ 76543210

⬛ Operations
▪ & Intersection 01000001 { 0, 6 }

▪ | Union 01111101 { 0, 2, 3, 4, 5, 6 }

▪ ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

▪ ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~010000012 → 101111102

▪ ~0x00 → 0xFF

▪ ~000000002 → 111111112

▪ 0x69 & 0x55 → 0x41

▪ 011010012 & 010101012 → 010000012

▪ 0x69 | 0x55 → 0x7D

▪ 011010012 | 010101012 → 011111012

Bit-Level Operations in C

⬛ Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

▪ View arguments as bit vectors

▪ Arguments applied bit-wise

⬛ Examples (Char data type)
▪ ~0x41 → 0xBE

▪ ~0100 00012 → 1011 11102

▪ ~0x00 → 0xFF

▪ ~0000 00002 → 1111 11112

▪ 0x69 & 0x55 → 0x41

▪ 0110 10012 & 0101 01012 → 0100 00012

▪ 0x69 | 0x55 → 0x7D

▪ 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

⬛ Contrast to Bit-Level Operators
▪ Logic Operations: &&, ||, !

▪ View 0 as “False”

▪ Anything nonzero as “True”

▪ Always return 0 or 1

▪ Early termination

⬛ Examples (char data type)
▪ !0x41 → 0x00

▪ !0x00 → 0x01

▪ !!0x41→ 0x01

▪ 0x69 && 0x55 → 0x01

▪ 0x69 || 0x55 → 0x01

▪ p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: https://canvas.cmu.edu/courses/30386/assignments/525231

Do model 3, then stop.

https://canvas.cmu.edu/courses/30386/assignments/525231

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical versus Bitwise

!!x != x ~~x == x

X !X !!X !!X == X

−1 0 1 No

0 1 0 Yes

1 0 1 Yes

2 0 1 No

X ~X ~~X ~~X == X

−1 0 −1 Yes

0 −1 0 Yes

1 −2 1 Yes

2 −3 2 Yes

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation and addition

▪ Conversion, casting, extension, truncation

▪ Multiplication, division, shifting

⬛ Byte order in memory, pointers, strings

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

s u
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

u s
X

⬛ Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

u

s

w–1 0

Relation between Signed & Unsigned

Large positive weight
becomes

Large negative weight

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

su
X

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

±16

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1

–2

0

UMax

UMax – 1

TMax

TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

⬛ 2’s Comp. → Unsigned
▪ Ordering Inversion

▪ Negative → Big Positive

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

⬛ Constants
▪ By default are considered to be signed integers

▪ Unsigned if have “U” as suffix

0U, 4294967259U

⬛ Casting
▪ Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

▪ Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting Surprises
⬛ Expression Evaluation

▪ If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

▪ Including comparison operations <, >, ==, <=, >=

▪ Examples:

Constant 1 Constant 2 Relation Evaluation

0 0U == Unsigned

-1 0 < Signed

-1 0U > Unsigned

INT_MAX INT_MIN > Signed

(unsigned)INT_MAX INT_MIN < Unsigned

-1 -2 > Signed

(unsigned)-1 -2 > Unsigned

INT_MAX ((unsigned)INT_MAX) + 1 < Unsigned

INT_MAX (int)(((unsigned)INT_MAX) + 1) > Signed

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules

⬛ Bit pattern is maintained

⬛ But reinterpreted

⬛ Can have unexpected effects: adding or subtracting 2w

⬛ Expression containing signed and unsigned int
▪ int is cast to unsigned!!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation and addition

▪ Conversion, casting, extension, truncation

▪ Multiplication, division, shifting

⬛ Byte order in memory, pointers, strings

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension and Truncation

⬛ Sign Extension

⬛ Truncation

Make k copies of

sign bit

Chop off k highest

bits

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

-32 16 8 4 2 1

1 1 0 1 1 0-10 =

Positive number Negative number

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation

▪ Conversion, casting

▪ Extension, truncation, shifting

▪ Addition, multiplication

⬛ Representations in memory, pointers, strings

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shifting

⬛ Left Shift: x << y
▪ Shift bit-vector x left y

positions
▪ Throw away extra bits on left

▪ Fill with 0’s on right

▪ Equivalent to multiplying by 2𝑦

⬛Right Shift: x >> y
▪ Shift bit-vector x right y

positions

▪ Throw away extra bits on right

▪ Two kinds:
▪ “Logical”: Fill with 0’s on left
▪ “Arithmetic”: Replicate most

significant bit on left

▪ Almost equivalent to dividing
by 2𝑦

⬛Undefined Behavior (in C)
▪ Shift amount < 0 or ≥ word size

Argument x 01100010

<< 3 00010000

Logical >> 2 00011000

Arithmetic >> 2 00011000

Argument x 10100010

<< 3 00010000

Logical >> 2 00101000

Arithmetic >> 2 11101000

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication

⬛ Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

⬛ But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 = 22w–2

⬛ So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: https://canvas.cmu.edu/courses/30386/assignments/525231

Do model 4, then stop.

https://canvas.cmu.edu/courses/30386/assignments/525231

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

⬛ Standard Multiplication Function
▪ Ignores high order w bits

⬛ Implements Modular Arithmetic
UMultw(u , v) = u · v mod 2w

• • •

• • •

u

v*

• • •
u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001

* 1101 0101

1100 0001 1101 1101

1101 1101

E9

* D5

C1DD

DD

233

* 213

49629

221

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

⬛ Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •
u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23

* -43

989

-35

1110 1001

* 1101 0101

0000 0011 1101 1101

1101 1101

E9

* D5

03DD

DD

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

⬛ Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

⬛ Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3) == u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2k

True Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

⬛ Representing information as bits

⬛ Bit-level manipulations

⬛ Integers
▪ Representation: unsigned and signed; negation and addition

▪ Conversion, casting, extension, truncation

▪ Multiplication, division, shifting

⬛ Byte order in memory, pointers, strings

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Oriented Memory Organization

⬛ Programs refer to data by address
▪ Imagine all of RAM as an enormous array of bytes

▪ An address is an index into that array

▪ A pointer variable stores an address

⬛ System provides a private address space to each “process”
▪ A process is an instance of a program, being executed

▪ An address space is one of those enormous arrays of bytes

▪ Each program can see only its own code and data within its enormous array

▪ We’ll come back to this later (“virtual memory” classes)

• • •

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Yes, both of these numbers are

correct.

This discrepancy is known as the

Great Storage Industry Marketing

Lie. Ask me about it after class if

you really want to know.

Machine Words

⬛ Any given computer has a “Word Size”
▪ Nominal size of integer-valued data

▪ and of addresses

▪ Until recently, most machines used 32 bits (4 bytes) as word size

▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size

▪ Potentially, could have 16 EB (exabytes) of addressable memory

▪ That’s 18.4 × 1018 bytes

▪ Machines still support multiple data formats

▪ Fractions or multiples of word size

▪ Always integral number of bytes

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses Always Specify Byte Locations

▪ Address of a word is address of
the first byte in the word

▪ Addresses of successive words
differ by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering

⬛ So, how are the bytes within a multi-byte word ordered in
memory?

⬛ Conventions
▪ Big Endian: Sun, PPC Mac, network packet headers

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and
Windows

▪ Least significant byte has lowest address

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example

⬛ Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement
representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

In
cr

e
as

in
g

ad
d

re
ss

e
s

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data Representations

⬛ Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18213";

Representing Strings

⬛ Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30

– Digit i has code 0x30+i

▪ String should be null-terminated

▪ Final character = 0

⬛ Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Representing x86 machine code

⬛ x86 machine code is a sequence of bytes
▪ Grouped into variable-length instructions, which look like strings…

▪ But they contain embedded little-endian numbers…

⬛ Example Fragment

⬛ Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00

