Carnegie Mellon

Machine-Level Programming |: Basics

15-213/14-513/15-513: Introduction to Computer Systems
4th | ecture, September 8, 2022

Instructors:

Dave Andersen (15-213)
Zack Weinberg (15-213)
Brian Railing (15-513)
David Varodayan (14-513)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Announcements

m Lab 0 deadline extended to today Thursday 11:59pm ET
m Lab 1 (datalab) is due Thursday September 15

= Hand in via Autolab

m Lab 2 (bomblab) is due Thursday September 22

= Available on Autolab
m Written Assignment 1 is due Wednesday September 14
= Available and hand in on Canvas

m Look out for info on GDB bootcamp
= Exceptionally useful for labs—you’ll really want it for Lab 2.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures
Assembly Basics: Registers, operands, move

H
H
m Arithmetic & logical operations
m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Intel x86 Processors

m Dominate laptop/desktop/server market

= ARM architecture is a promising newcomer

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

= Now 3 volumes, about 5,000 pages of documentation

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

= In terms of speed. Less so for low power.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Intel x86 Processors, briefly

m Machine Evolution e -
" 8086 (16 bit) 1978 LGl 'ntegratedMemory Controller;-i3:Ch DDR3:
386 (32 bit]) 1985 0.3M 7] |
Pentium 4e (64 bit) 2004 55M
Core 2 (multicore!) 2006 291M
Corei7 2008 731M
Core i9 2019 3.5B

Core0 Core 1 Core2 - Core 3

hd

Shared L3 Cache

m Added Features
" |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
" Transition from 32 bits to 64 bits
" More cores

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Intel x86 Processors, cont.

[| PaSt Generations Process technology

® 1st Pentium Pro 1995 600 nm

= 1t Pentium I 1999 250 nm

= 1st Pentium 4 2000 180 nm

® 1stCore 2 Duo 2006 65 nm

. . P hnol i i

m Recent & Upcoming Generations ?:;Zi;e;f ::r(:fz’v:;nz?:::n

1. Nehalem. 2008 45 nm (10 nm = 100 atoms wide)

2. SandyBridge 2011 32 nm

3. lvy Bridge 2012 22 nm (But this is changing now.)

4. Haswell 2013 22 nm

5. Broadwell 2014 14 nm

6. Skylake 2015 14 nm

/. Kaby Lake 2016 14 nm

8. Coffee Lake 2017 14 nm

9. Cannon Lake 2018 10 nm

10. Ice Lake 2019 10 nm

11. Tiger Lake 2020 10 nm

12. Alder Lake 2022 “intel 77 (10nm+++)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

2018 State of the Art Coffee Lake

Core J'Core -

RN g¥ilin'te icennectiy
il ol !‘,',. iy ‘,_I\ql o

Core I Core -

m Mobile Model: Core i7 m Server Model: Xeon E
= 2.2-3.2 GHz " |ntegrated graphics
= 45W m Desktop Model: Core i7 = Multi-socket enabled
= 3.3-3.8 GHz

" |Integrated graphics
= 2.4-4.0 GHz
= 35-95 W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

= 80-95W

Carnegie Mellon

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= AMD makes x86 clones but then .. started innovating
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
®" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32
= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Our Coverage

m IA32
= The traditional x86
= For 15/18-213: RIP, Summer 2015

m X36-64

" The standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation

= Book covers x86-64
= Web aside on 1A32

= We will only cover x86-64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

How Does a Computer Understand Code?

m Short answer: Bits!
m Not the complete picture, let’s take it bit by bit

0 lllUD::;;. .
J 1101100011100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

How Does a Person Understand English?

m Let’s see how humans understand English
= English uses an alphabet
= A B, C..
= Examine a sentence: | love 15213!
= Subject: () core noun of the sentence
= Object: (15213) supporting noun
= Verbs: (love) actions associating subject and object

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

How Does a CPU Understand Code (cont)?

m What’s the language of the CPU? Instructions
= Basic building block is bits
= Asentencein English is like a program
= Subject and Object?
= Data: some specific Integers, Floats, ...
= Verb?
= Arithmetic Operations: +, -, /, *, <<, >>, ...

m CPU: Take data, apply action, use result
= |let’sencode:1+2
= (+,1,2)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Generalize Our Encoding

m1+2->(+1,2) 1+2
m 3+4->(+3,4)
m Let’s make specialized hardware in our CPU for +, -, ...

Integer Integer
p Operand Operand
> Status
q " Status
Opcode
+ >
Integer
Result

m Separate operations from data

[| p:l
[| q=2
" (+,p, Q)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Generalize Our Data Pipeline

Integer Integer
p Operand Operand
> Status
q " Status
Opcode
+ >

Integer
Result

m CPU needs to supply p, q to our arithmetic unit

m CPU uses registers to store information for the ALU
" (+, %p, %aq)
m But where do the registers get information?
" From the program, and in memory
= (Load, Ox1, %p)
« (Load, &0x7FFFF7AFCBAO, %0q)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Levels of Abstraction

#include <stdio.h>
int main(){
int i, n = 10, t1 = 0, t2 = 1, nxt;
for (i = 1; 1 <= n; ++i){
printf("%d, ", tl);
nxt = tl1 + t2;
tl = t2;
t2 = nxt; }
return 0; }

C programmer

Assembly programmer

CPU Memo
Addresses Y
Register ”
egisters Data Code
PC < > Data
Condition Instructions Stack
Codes <

Computer Designer

Gates, clocks, circuit layout, ...
—D Q_
A Q |D

— 6_

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing assembly/machine code.

= Examples: instruction set specification, registers
m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency

m Code Forms:
" Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code

m Example ISAs:
" Intel: x86, IA32, Itanium, x86-64

= ARM: Used in almost all mobile phones
= RISCV: New open-source ISA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Assembly/Machine Code View

CPU Memory
Addresses
Registers >
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State ~~ -

= PC: Program counter Rest in

= Address of next instruction |Instruction
= Called “RIP” (x86-64) Pointer = Code and user data

= Register file | |

" Memory
= Byte addressable array

= Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching

Bryant ai 19

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes
m Code: Byte sequences encoding series of instructions

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Class Activity

m Form teams of 2 (3 is ok)
m Look at the activity on Canvas

m One person should take notes / advise / etc

= Download worksheet
https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf

m One person should ssh to a shark machine

= wget http://www.cs.cmu.edu/~213/activities/gdb-and-
assembly.tar

= tar xf gdb-and-assembly.tar
= cd gdb-and-assembly
= /actl

m STOP AFTER ACT1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

https://www.cs.cmu.edu/~213/activities/gdb-and-assembly.pdf
http://www.cs.cmu.edu/~213/activity/lec5.tar

Carnegie Mellon

x86-64 Integer Registers

$rax Seax $r8 $r8d

$rbx %ebx $r9 $rod

srcx %ecx $rl0 $rl10d
srdx %edx srll $rlld
srsi %esi %rl2 srl2d
srdi $edi $rl3 $rl3d
3rsp %esp srl4 $rldd
srbp %ebp %rld $r15d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)
= Not part of memory (or cache)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Some History: IA32 Registers Origin

(mostly obsolete)

-
$eax $ax $ah gal accumulate
$ecx cx %ch 2cl counter
2
§ $edx $dx ¢dh 2dl data
2 <
©
o $ebx sbx sbh bl base
o
o Qesi %si source

© index

. o 1= destination

_ $Sedi $di e
o o stack
°eSP 15 pointer

base
S
oebp “bp pointer
\)
Y

16-bit virtual registers

(backwards compatibility)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Editi 23

Assembly Characteristics: Operations

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches
" Indirect branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Moving Data srax
m Moving Data SrcCX
ource, Dest $rdx
o

m Operand Types srbx
Immediate: Constant integer data srsi
= Example: $0x400, $-533 Srdi
= Like C constant, but prefixed with '$ Srsp

= Encoded with 1, 2, or 4 bytes
: : . srbp

= Register: One of 16 integer registers
= Example: $rax, %$rl3
P SrN

= But $rsp reserved for special use

= Simplest example: ($rax) :
Warning: Intel docs use

mov Dest, Source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

= Various other “addressing modes”

Carnegie Mellon

movq Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movg $-147, (%$rax) *p = -147;

mo $rax, srd temp2 = templ;
movq < Reg Reg v * * P P
Mem movg %rax, ($rdx) *p = temp;

N Mem Reg movg (%rax),%rdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Example of Simple Addressing Modes

void

whatAmI (<type> a, <type> b)

{

?2?27?°?
whatAmI:

} o) n [¢)
movq (%$rdi), %rax
movq $rsi), %Srdx
movq $rdx, (%rdi)
movq Srax, (%rsi)
ret

] grsi
Srdi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

28

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movq (%rdi) , %rax
long t1 = *yp; movq %rsi), %rdx
*xp = tl; movq $rdx, (%rdi)
*yp = tO0; movq %$rax, (%rsi)
} ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp)
{ $rdi o
long t0 = *xp; S s
long t1 = *yp; °ret
*xp = tl; $rax
*yp = tO0;
} Srdx
Register Value
$rdi Xp
srsi YP swap:
srax t0 movq $rdi), %rax # t0 = *xp
Srdx tl movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Understanding Swap()

] Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
srax 0x108
$rdx 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

3

Carnegie Mellon

Understanding Swap()

] Memory
Reg Isters Address
: 123 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 0x108
$rdx 456 | 0x100
swap:
movq $rdi), %Srax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

32

Understanding Swap()

] Memory
Registers Address
: 123 | 0x120
Srdi 0x120
0x118
$rsi| 0x100
0x110
$rdx 456 |€ 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movq $rsi), %$rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Understanding Swap()

] Memory
Registers Address
: 456 | 0x120
Srdi 0x120
0x118
$rsi| 0x100
0x110
$rdx 456 456 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movqg $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Understanding Swap()

] Memory
Reg Isters Address
456 | 0x120
$rdi| 0x120
0x118
$rsi| 0x100
0x110
%rax 123 \ OX108
$rdx 456 123 | 0x100
swap:
movqg $rdi) , %rax # t0 = *xp
movqg $rsi), %rdx # tl1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Complete Memory Addressing Modes

m Most General Form
D(Rb,Rj,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers

= Ri: Index register: Any, except for $rsp
= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Address Computation Examples

D(Rb,R;i,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
Rb: Base register: Any of 16 integer registers

$rdx O0xf000

$rcx 0x0100

= Ri: Indexregister: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (3rdx)

$rdx, srcx)

$rdx, %$rcx,4)

0x80(,%rdx,2)

38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Computation Examples

$rdx O0xf000

$rcx 0x0100

Expression Address Computation Address

0x8 (%rdx) 0xf000 + 0x8 0x£f008
$rdx, $rcx) 0x£f000 + 0x100 0x£f100
$rdx, %rcx,4) 0xf000 + 4*0x100 |0x£f400
0x80 (, %rdx, 2) 2*0x£f000 + 0x80 0x1e080

39

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Address Computation Instruction

m leaq Src, Dst

" Srcis address mode expression
= Set Dst to address denoted by expression

m Uses
= Computing addresses without a memory reference
= E.g., translationofp = &x[i];
= Computing arithmetic expressions of the form x + k*y
= k=1,2,4,0r8

m Example
1 12 (1 .
{°ng miz(long x) Converted to ASM by compiler:
return x*12; leaq (%$rdi,%rdi,2), %rax # t = x+2*x

} salq $2, %rax # return t<<2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Activity 2!

m ./act2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Some Arithmetic Operations

m Two Operand Instructions:
Format Computation
addg Src,Dest Dest = Dest + Src
subg Src,Dest Dest = Dest — Src
imulg Src,Dest Dest = Dest * Src

salqg Src,Dest Dest = Dest << Src Also called shlq
sarqg Src,Dest Dest = Dest >> Src Arithmetic
shrqg Src,Dest Dest = Dest >> Src Logical

Xorqg Src,Dest Dest = Dest A Src

andqg Src,Dest Dest = Dest & Src

orqg Src,Dest Dest = Dest | Src

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Some Arithmetic Operations

m One Operand Instructions

incg Dest Dest =Dest + 1
decq Dest Dest =Dest -1
negq Dest Dest = — Dest
notqg Dest Dest = ~Dest

m See book for more instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Arithmetic Expression Example

arith:
leaq $rdi,%rsi), %Srax
long arith addg $rdx, %rax
(long x, long y, long z) leaq %rsi,%rsi,2), %Srdx
{ salq $4, S$rdx
long tl1 = x+y; leaq 4 (%rdi,%$rdx), %rcx
long t2 = z+tl; imulqg $rcx, %rax
long t3 = x+4; ret
long t4 =y * 48;]]
long t5 = t3 + t4; Interesting Instructions
long rval = t2 * t5; " leagq: address computation
} return rval; = salg: shift
= imulgqg: multiplication

= But, only used once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Understanding Arithmetic Expression

Example

arith:
leaq %$rdi,%rsi), %rax # tl
long arith addq $rdx, %rax # t2
(long x, long y, long z) leaq ($rsi,%rsi,2), %Srdx
{ salqg $4, %$rdx # t4
long tl1 = x+y; leaq 4 (%rdi,%rdx), %rcx # t5
long t2 = z+tl; imulqg %$rcx, %rax # rval
long t3 = x+4; ret

long t4 =y * 48;

lenty #5 = E G Register ___Usels) _____

long rval = t2 * t5;

return rval; srdi Argument x
} $rsi Argument y
Srdx Argument z,
t4
$rax tl, t2, rval

$rcx t5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gce -Og pl.c p2.c -o p
= Use debugging-friendly optimizations (-Oq)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -Og -S)

\ 4

text Asm program (pl.s p2.s)

Assembler (gcc —c or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y) sumstore:
pushqg $rbx
void sumstore(long x, long vy, movq rdx, 3%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y):; popda $rbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcec -Og —-S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi_startproc
pushg 3%rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq srdx, 3%rbx
call plus
movq $rax, (%rbx)
popa srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:
.size sumstore, .-sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

What it really looks like

Things that look weird
and are preceded by a *’
sumstore: are generally directives.

pushg 3%rbx

sumstore:
pushq $rbx
o
movq srdx, %rbx movq srdx, %rbx
call plus
call plus -)
movq srax, (%rbx)
movq $rax, (%rbx) .
pPoprg $rbx
pPoprPgq $rbx ret

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

Object Code

Code for sumstore
m Assembler

Oxogzggg& " Translates .s into .o
0x48 = Binary encoding of each instruction
0x89 = Nearly-complete image of executable code
gzzg = Missing linkages between code in different
Oxf2 files
Oxff m Linker
g:i: = Resolves references between files

e Total of 14 bytes

0x48 = Combines with static run-time libraries

0x89 e Each instruction

0x03 1, 3, or 5 bytes

Ox5b e Starts at address

Oxc3 0x0400595 = Linking occurs when program begins
execution

= E.g., code formalloc, printf
= Some libraries are dynamically linked

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Machine Instruction Example
m C Code

= Store value t where designated by
dest

*dest = t;

m Assembly

" Move 8-byte value to memory

movq %rax, (%rbx)

= Quad words in x86-64 parlance
= Operands:

t: Register $rax

dest: Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
= Stored at address 0x40059e

0x40059%9e: 48 89 03

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 53

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push $rbx
400596: 48 89 d3 mov %$rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, (%$rbx)
4005al1l: 5b pop $rbx
4005a2: «c3 retqg

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or . o file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 54

Carnegie Mellon

Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, $rbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov $rax, ($rbx)
0x00000000004005a1 <+12>:pop $rbx
0x00000000004005a2 <+13>:retqg

m Within gdb Debugger

= Disassemble procedure
gdb sum

disassemble sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 55

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:

0x0400595: 0x0000000000400595 <+0>: push %rbx

0x33 0x0000000000400596 <+1>: mov $rdx, $rbx

0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>

0x89 0x000000000040059% <+9>: mov $rax, ($rbx)

0xd3 0x00000000004005al1 <+12>:pop $rbx

Oxe8 0x00000000004005a2 <+13>:retq

Oxf2

Oxff

g:g m Within gdb Debugger

0x48 = Disassemble procedure

0x89 gdb sum

0x03 _

0x5b disassemble sumstore

Oxc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 56

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD .EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:

30001000:

30001001: _ _ _

30001003 : .Reverse engmeerlr.\g forbidden by
30001005 Microsoft End User License Agreement
3000100a:

m Anything that can be interpreted as executable code

m Disassembler examines bytes and reconstructs assembly source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 57

Carnegie Mellon

Machine Programming |: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts

m C, assembly, machine code

= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86-64 move instructions cover wide range of data movement
forms

m Arithmetic

= C compiler will figure out different instruction combinations to
carry out computation

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 58

