Carnegie Mellon

Machine-Level Programming IV: Data

15-213: Introduction to Computer Systems
7t Lecture, September 20, 2022

Instructors:
Dave Andersen (15-213)
Zack Weinberg (15-213)
Brian Railing (15-513)
David Varodayan (14-513)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today

B Partial recap: Integers
= Word size
= Addresses

Bl One-Dimensional Arrays
B Structs

= Alignment

= Arrays of Structs

B Multi-Dimensional Arrays
» Nested (Arrays of Arrays)
= (Arrays of) Pointers to Arrays

B If we have time:
= Endianness

= Machine Instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Byte-Oriented Memory Organization

QQ Qﬁ.

B Programs refer to data by address
= |magine all of RAM as an enormous array of bytes
= An address is an index into that array
= A pointer variable stores an address

H System provides a private address space to each “process”
= A process is an instance of a program, being executed
= An address space is one of those enormous arrays of bytes
= Each program can see only its own code and data within its enormous array
= We'll come back to this later (“virtual memory” classes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Machine Words

B Any given computer has a “Word Size”
= Nominal size of integer-valued data
- and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
- Limits addresses to 4GB (232 bytes)

= |ncreasingly, machines have 64-bit word size
- Potentially, could have 16 EB (exabytes) of addressable memory
- That’s 18.4 x 108 bytes

= Machines still support multiple data formats
- Fractions or multiples of word size
- Always integral number of bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Addresses Always Specify Byte Locations

32-bit 64-bit Bytes Addr
= Address of a word is address of Words Words
the first byte in the word 0000
: Addr 0001
= Addresses of successive words = 005
differ by 4 (32-bit) or 8 (64-bit) Addr 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
- 0011
0008 0012
Addr 0013
0012 0014
0015

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

TO d a y Activity break:

pick a partner (just one other student this time),
open activity
B Pa rtial recap: |ntege rs (https://canvas.cmu.edu/courses/30386/assignments/528617),
do parts 1 and 2

= Word size
= Addresses

B One-Dimensional Arrays
Bl Structs

= Alignment

= Arrays of Structs

B Multi-Dimensional Arrays
» Nested (Arrays of Arrays)
= (Arrays of) Pointers to Arrays
B If we have time:
= Endianness

= Machine Instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

https://canvas.cmu.edu/courses/30386/assignments/528617

Array Allocation

B Basic Principle
I A[L];
= Array of data type T and length L
= Contiguously allocated region of L * sizeof (T) bytes in memory

char string[12];

a 3

X X+12
int val[5];
X X+4 X+8 xX+12 X+ 16 x+20
double a[3];
I 1 1 t
X X+8 X+ 16 X+ 24
char *p[3];
X X+8 X+ 16 X+ 24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Array Access

W Basic Principle
T A[L];
= Array of data type T and length L
= |dentifier A can be used as a pointer to array element 0: Type T*

int val[5]; | 1 S] 2 | 1 | 3 |
X x+4 x+8 x+ 12 x + 16 x + 20

BReference Type Value

val[4] int 3

val int * X

val+l int * x + 4

&val[2] int * x + 8

val[5] int ?7?

* (val+l) int 5 //vall[l]

val + i int * x + 4 * i //&val[i]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Array Example

#define ZLEN 5
typedef int zip dig[ZLEN] ;

zip digemu = { 1, 5, 2, 1, 3 };

zip digmit = { 0, 2, 1, 3, 9 };

zip dig ucb = { 9, 4, 7, 2, 0 };

zip dig cmu; 1 | 5 | 2 | 1 | 3 |
16 20 24 28 32 36

zip dig mit; 0 | 2 | 1 | 3 | 9 |
36 40 44 48 52 56

zip dig ucb; 9 | 4 | 7] 2] 0 ‘
56 60 64 68 72 76

14

B Declaration “zip dig cmu” equivalentto “int cmul[5]
B Example arrays were allocated in successive 20 byte blocks
= Not guaranteed to happen in general

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Array Accessing Example

zip dig cmu; 1 5 2 1 3

16 20 24 28 32 36

int get digit
(zip dig z, int digit)

{
return z[digit]; = Register $rdi contains

} starting address of array

= Register $rsi contains
x86-64 array index
%rdi = z = Desired digit at
%rsi = digit $rdi + 4*%rsi
movl (%$rdi,%rsi,4), %eax # z[digit]

= Use memory reference

$rdi,%$rsi, 4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Understanding Pointers & Arrays #1
| Ded | Aan | *am

[[w0 [| oo [oo o

int A1[3]

int *A2

B Cmp: Compiles (Y/N)
B Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Understanding Pointers & Arrays #1

o | | an
B T ET T TS
N

int A1[3]
int *A2 Y N 8 Y Y 4
Al Allocated pointer

Unallocated pointer

Allocated int | |
Unallocated int |

A2 @

B Cmp: Compiles (Y/N)
B Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Understanding Pointers & Arrays #2
| Ded | A | o *an | **an

R T E e

int A1[3]

int *A2[3]
int

(*A3) [3]
int
(*A4[3])

B Cmp: Compiles (Y/N)
B Bad: Possible bad pointer reference (Y/N)
B Size: Value returned by sizeof

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Understanding Pointers & Arrays #2
m““

I T e ED R T Er N T

int Al[3]

int *A2[3] Y N 24 Y N 8 Y Y 4

int Y N 8 Y Y 12 Y Y 4
(*A3) [3]

int Y N 24 Y N 8 Y Y 4
(*A4[3])

Al

A2/A4 t t t

A3 @ >

Allocated pointer

Unallocated pointer

Allocated int | |
Unallocated int |

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Today

Activity break:

i d ts 3 and 4
W Partial recap: Integers o parts 3 and 4 now

= Word size
= Addresses

Bl One-Dimensional Arrays
B Structs
= Alignment
= Arrays of Structs
B Multi-Dimensional Arrays
» Nested (Arrays of Arrays)
» (Arrays of) Pointers to Arrays

B If we have time:
= Endianness

= Machine Instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Structure Representation

r
struct rec {
int a[4]; v
size t i; a i next
* o
. struct rec *next; 0 16 24 32

B Structure represented as block of memory
= Big enough to hold all of the fields

B Fields ordered according to declaration

= Even if another ordering could yield a more compact
representation

B Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the structures
in the source code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Generating Pointer to Structure Member

r r+4*idx
struct rec { l
int a[4]; v
size t i; a i next
* o
. struct rec *next; 0 16 24 39
B Generating Pointer to LS SEEE S
Arrav Element (struct rec *r, size t idx)
y {
= QOffset of each structure return &r->al[idx];
member determined at }
compile time
* Computeasr + 4*idx # r in %$rdi, idx in %rsi

leaq %$rdi,%rsi,4), %rax
ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

struct rec {
Following Linked List e e Al
int 1;
% c
] C Code Y struct rec *next;
r l4
void set val M !
(struct rec *r, int wval) a i next
{
while (r) { 0 I 16 24 32
int i = r->i; Element i

r->ali] = val;

r = r->next;

) srdi r
} srsi val
.L11: # loop:

movslg 16 (%rdi), %rax # i = M[r+l6]
movl %esi, (%rdi,%rax,4) # M[r+4*i] = val
movq 24 (%$rdi) , %rdi # r = M[r+24]
testg rdi, %$rdi # Test r
jne .L11 # if '=0 goto loop

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Structures & Alignment

B Unaligned Data struct S1 {
;] char c¢;
c|l if[o0] i[1] v int i[2];
p pt+l p+5 p+9 p+17 double v;
} *p;

B Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K

Cc i[0] i[1] v
p+0 pt4 p+8 p+16 pt+24
Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Alignment Principles

B Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

B Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes (system
dependent)

- Inefficient to load or store datum that spans quad word
boundaries

= Virtual memory trickier when datum spans 2 pages

B Compiler

= |nserts gaps in structure to ensure correct alignment of fields

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Specific Cases of Alighment (x86-64)
B 1 byte: char, ...

" no restrictions on address

B 2 bytes: short, ..
= |owest 1 bit of address must be 0,
B 4 bytes: int, float, ...
= |owest 2 bits of address must be 00,
B 8 bytes: double, 1long, char *,...

= |owest 3 bits of address must be 000,

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Satisfying Alignment with Structures
B Within structure:

struct S1 {

= Must satisfy each element’s alignment requirement char c;
B Overall structure placement int i[2];
double v;

= Each structure has alignment requirement K

} *p;

- K = Largest alignment of any element
= |nitial address & structure length must be multiples of K
B Example:
= K=8, duetodouble element

C i[0] i[1] v
p+0 pt4 p+8 p+16 pt+24

Multiple of 4 Multiple of 8

Multiple of 8 Multiple of 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Carnegie Mellon

Meeting Overall Alighment Requirement

B For largest alignment requirement K struct S2 {

B Overall structure must be multiple of K SRR V5
int i[2];
char c;

} *p;

v i[0] i[1] c
p+0 p+8 ptl6 pt24

/

Multiple of K=8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Saving Space

B Put large data types first

struct S4 { struct S5 {
char c; - int i;
int 1i; char c;
char d; char d;

} *ps } *p;

B Effect (K=4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Arrays of Structures

struct S2 {
B Overall structure length double v;
. int i[2];
multiple of K char o
B Satisfy alignment requirement } a[l0];

for every element

alo] a[l] al[2] e o o
a+0 a+24 a+48 a+72

v i[0] i[l] c
a+24 a+32 a+40 a+48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Accessing Array Elements struct 33 {
short 1i;
float v;
B Compute array offset 12*idx short j;
= sizeof (S3), including alignment spacers b allol;
B Element j is at offset 8 within structure
B Assembler gives offset a+8
= Resolved during linking
TS —— P a— M s
a+0 a+l2 a+l2*idx
| i v Jj
a+12*idx a+12*idx+8

short get j(int idx) # 2rdi = idx

{ t L dxc] 5 leaqg (%rdi,%rdi,2),%rax # 3*idx
} return alidx].3; movzwl a+8(,%rax,4),%eax

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Today

Activity break:

i do part 5
B Partial recap: Integers 0 part 5 now

= Word size
= Addresses

B One-Dimensional Arrays
Bl Structs

= Alignment

= Arrays of Structs

B Multi-Dimensional Arrays
= Nested (Arrays of Arrays)
= (Arrays of) Pointers to Arrays

B If we have time:
= Endianness

= Machine Instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Multidimensional (Nested) Arrays

B Declaration
T A[R][C];

A[0][0] s « o A[O][C-1]

= 2D array of data type T * *
= Rrows, C columns . .

= Type T element requires K bytes
B Array Size

= R*C*Kbytes
B Arrangement

= Row-Major Ordering

A[R-1][0] e« e« « A[R-1][C-1]

int A[R] [C];

A A A A A A
[0] | o o o | [0] [1] | o o o | [1] I [R-1] | o o o | [R-1]
[0] [c-11 | [0] [c-1] [0] [c-1]

<

4*R*C Bytes >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Nested Array Example

#define PCOUNT 4

zip dig pgh[PCOUNT] =
{{1, 5, 2, 0, 6},
{1, 5, 2, 1, 3},
{1, 5, 2, 1, 7 },
{1, 5, 2, 2, 1 }};

zip dig
pgh[4];

a2 a2 a2 a2 a2

76 96 116 136 156

B “zip dig pgh[4]” equivalentto “int pgh[4] [5]”
= Variable pgh: array of 4 elements, allocated contiguously
= Each elementis an array of 5 int’s, allocated contiguously

B “Row-Major” ordering of all elements in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Nested Array Row Access

B Row Vectors
= AJ[i] is array of C elements

= Each element of type T requires K bytes
= StartingaddressA + i * (C * K)

int A[R][C];

A[0] —m] « Ali] > « A[R-1] >
A A A A A A
[0] LI) [0] e o o [i] oo o0 [i] ® O o | [R-1] LI I [R-1]
[0] [C-1] [0] [C-1] [0] [C-1]
A A+ (1*C*4) A+ ((R-1) *C*4)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Nested Array Row Access Code

1/5(2(0|6|1(5(2|1|3]|1(5(2|1|7|1(5|2|2]|1

pgh pgh[2] int *get pgh zip(int index)
{
return pgh[index];
}
%rdi = index
leaq (%rdi,%rdi,4) , %rax # 5 * index
leaq pgh(,%rax,4) ,%rax # pgh + (20 * index)

B Row Vector
= pgh[index] isarrayof 5int’s
= Starting address pgh+20*index
B Machine Code

= Computes and returns address
= Computeaspgh + 4* (index+4*index)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Nested Array Element Access

B Array Elements
= A[i] []j] is element of type T, which requires K bytes

= Address A + i * (C * K) + J * K
=A+ (i *C+ j) *K

int A[R][C];
A[O] — : Ali] : : I;][R' :
A
o [31 A [2_ [R'
[0] oo [C- oo [1] eeoo e o o 1] co o 1]
A A+ (i*C*4) T A+ ((R-1) *C*4)
A+ (P*C*4)+ (*4)
34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nested Array Element Access Code

1/5(2(0|6|1|(5(2|1|3]|]1(5(2|1|7|1(5|2|2]|1

a A

pgh pgh[1][1] |int get_pgh digit(int index, int dig)

{
return pgh[index] [dig] ;

}

leaq $rdi,%rdi,4), %$rax # 5*index
addl %rax, %rsi # 5*index+dig

movl pgh(,%rsi,4), %eax # M[pgh + 4* (5*index+digqg)]

B Array Elements
* pgh[index] [dig] isint
= Address:pgh + 20*index + 4*dig
= pgh + 4*(5*index + dig)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Multi-Level Array Example

B Variable univ denotes

zip digecmu = { 1, 5, 2, 1, 3 };
zip dig mit = { 0, 2, 1, 3, 9 }; array of 3 elements
zip dig ucb = { 9, 4, 7, 2, 0 }; B Each element is a pointer
#define UCOUNT 3 " 8 byjces .
int *univ[UCOUNT] = {mit, cmu, ucb}; B Each pointer points to array
of int’s
cmu
1 5 2 1 3
univ S S S S S
16 20 24 28 32 36
160 —| 36 mit
0 2 1 3 9
168 16 h A A A A A
36
176 = ach 40 44 48 52 56
‘ 9 4 7 2 0

56 60 64 68 72 76

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Element Access in Multi-Level Array

cmu

int get univ digit 1 5 2 1 3
(size t index, size t digit) — _

{ — - el 2 1 3 9
return univ[index] [digit]; o uch

} ~__ —| 9 4 7 2 0
salqg $2, %rsi # 4*digit
addg univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
movl $rsi), %eax # return *p
ret

B Computation
= Element access Mem[Mem[univ+8*index]+4*digit]
= Must do two memory reads
= First get pointer to row array
- Then access element within array

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Array Element Accesses

Nested array

Multi-level array

int get pgh digit
(size_t index, size t digit)

int get univ digit
(size_t index, size t digit)

return pgh[index] [digit]; return univ[index] [digit];
cmu
| 1 | s | 2 | 1 1 3 1
univ 116 T T T 1 1
1|5/2]o|l6|1ls]2]|1/3|2|5/2]1]7]|1|5]2]2]1]) 20 24 28 32 36
160 =36 M T 2 T 1 T 3 T 5]
168 —1{ 16 T i i |
76 26 116 136 156 176 —{56 @_ ucp 3° 40 44 48 52 56
_______,,{ s 1 4 { 7 { 7]| 0 {
56 60 64 68 72 76

Accesses looks similar in C, but address computations very different:

Mem[pgh+20*index+4*digit]

Mem[Mem[univ+8*index]+4*digit]

38

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

N X N Matrix
Code

B Fixed dimensions

= Know value of N at
compile time

B Variable dimensions,
explicit indexing
= Traditional way to

implement dynamic
arrays

Bl Variable dimensions,
implicit indexing
= “New” feature in C99

#define N 16
typedef int fix matrix[N] [N];
/* Get element A[i][]j] */
int fix ele(fix matrix A,
size t i, size t j)

{

return A[i] []j];
}

##define IDX(n, i, j) ((i)*(n)+(3))
/* Get element A[i][j] */
int vec ele(size t n, int *A,
size t i, size t j)
{
return A[IDX(n,i,]j)]1;
}

/* Get element a[i][]j] */
int var ele(size t n, int A[n][n],
size t i, size t Jj) {
return A[i] []j];
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

39

Carnegie Mellon

Summary

B Arrays
= Elements packed into contiguous region of memory

= Use index arithmetic to locate individual elements

B Structures
= Elements packed into single region of memory
= Access using offsets determined by compiler
= Possible require internal and external padding to ensure alignment

B Combinations
= (Can nest structure and array code arbitrarily

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Today

Activity break:

i do part 6
H Partial recap: Integers 0 part 6 now

= Word size
= Addresses

Bl One-Dimensional Arrays
Bl Structs

= Alignment

= Arrays of Structs

B Multi-Dimensional Arrays
» Nested (Arrays of Arrays)
= (Arrays of) Pointers to Arrays
B If we have time:
= Endianness
= Machine Instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Byte Ordering

B So, how are the bytes within a multi-byte word
ordered in memory?

B Conventions
= Big Endian: Sun, PPC Mac, network packet headers
= Least significant byte has highest address
= Little Endian: x86, ARM processors running Android, iOS, and Windows
= Least significant byte has lowest address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Byte Ordering Example

B Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Examining Data Representations

B Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

void show bytes (unsigned char *start, size t len) {
size t i;
for (i = 0; i < len; i++) {
printf ("$p\t%.2x\n",
(void *) &start[i], start[i]);

Printf directives:

%p: Print pointer (must be void *)

%.2x: Print integer in hexadecimal,
with at least two digits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = %d;\n%, a);
show bytes ((unsigned char *) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb’/7f71dbc od
Ox7fffb’/7f71dbd 3b
Ox7f£ffb’7f71dbe 00
Ox7f£ffb7f71dbt 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun 1A32 x86-64
EF AC 3C
FF 28 1B
FB F5 FE
2C FF 82
FD
TF
00
00

Different compilers & machines assign different locations to objects

May even get different results each time program is run (ASLR)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Representing Strings

char S[6] = "18213";
B Strings in C
= Represented by array of characters
= Each character encoded in ASCIl format 1A32 Sun
- Standard 7-bit encoding of character set 31 |« | 31
" Charz.ac.te.r 0” has code OX?O 38 |+ | 38
— Digit i has code 0x30+i 32 | J 32
= String should be null-terminated
31 |¢ * 31
= Final character =0
C tibilit > f 1=
ompatioill
[] p y 00 | *| 00

= Byte ordering not an issue

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

A note about x86 machine code

B x86 machine code is a sequence of bytes

= @Grouped into variable-length instructions, which look like strings...
= But they contain embedded little-endian numbers...

B Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx

8048366 81 c3 ab 12 00 00 add $0x12ab, $ebx
804836¢c: 83 bb 28 0000 00 00 cmpl x0, 0x28 (%$ebx)

B Deciphering Numbers

= Value: 0x1l2ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Carnegie Mellon

A peek at x86 instruction encoding

and its long, complex history

64-bit mode... Same bytes interpreted in 32-bit mode...
88 mov %cl, (%rdi) 88 of mov %cl,
66 89 mov %cx, (%rdi) 66 89 Of mov %CX,
89 mov %ecx, (%rdi) 89 of mov %ecx, \
89 mov %rcx, (%rdi) dec %eax _
88 mov %rob, (%rdi) inc %esp Address size.
h 32b
66 89 mov %r9w, (%rdi) 66 inc %sp changes fo s
89 mov %ro9d, (%rdi) dec %esp REX becomes

—

89 %r9, (%rdi)) a set of primary
opcodes
and 16-bit mode ...
ModRM byte:
cx/r9, di, 88 of mov %cl,
addressing mode 66 89 0f mov %ecx,
. _ 89 of mov %cCX, \
REX prefix Primary opcode: 44 inc %sp
adjust sizes and MOV reg — mem L 66 44 . % Address size
register numbers ~ + SOome operand size info 1nc »esp changes to 16 bits,
register numbering
is different

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

