
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

15-213/14-513/15-513: Introduction to Computer Systems
14th Lecture, October 13, 2022

Instructors:
Dave Andersen (15-213)
Zack Weinberg (15-213)
Brian Railing (15-513)
David Varodayan (14-513)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Dynamic Memory Allocation

¢ Programmers use dynamic
memory allocators (such as
malloc) to acquire virtual
memory (VM) at runtime
§ For data structures whose size

is only known at runtime

¢ Dynamic memory allocators
manage an area of process
VM known as the heap

Application

Dynamic Memory Allocator

Heap

Kernel virtual memory

Memory-mapped region for
shared libraries

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Run-time heap
(created by malloc)

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g., Red-Black tree) with pointers within

each free block, and the length used as a key

Need to tag
each block as
allocated/free

Need space
for pointers

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Implicit Lists Summary
¢ Implementation: very simple
¢ Allocate cost:

§ linear time worst case

¢ Free cost:
§ constant time worst case
§ even with coalescing

¢ Memory Overhead:
§ Depends on placement policy
§ Strategies include first fit, next fit, and best fit

¢ Not used in practice for malloc/free because of linear-
time allocation
§ used in many special purpose applications

¢ However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Memory-related perils and pitfalls

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks
¢ Method 1: Implicit list using length—links all blocks

¢ Method 2: Explicit list among the free blocks using pointers

¢ Method 3: Segregated free list
§ Different free lists for different size classes

¢ Method 4: Blocks sorted by size
§ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

Unused

32 48 32 16

32 48 32 16

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

¢ Maintain list(s) of free blocks, not all blocks
§ Luckily we track only free blocks, so we can use payload area
§ The “next” free block could be anywhere

§ So we need to store forward/back pointers, not just sizes
§ Still need boundary tags for coalescing

§ To find adjacent blocks according to memory order

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Optional

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists
¢ Logically:

¢ Physically: blocks can be in any order

A B C

32 32 32 32 4848 3232 32 32

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
¢ Insertion policy: Where in the free list do you put a newly

freed block?
¢ Unordered

§ LIFO (last-in-first-out) policy
§ Insert freed block at the beginning of the free list

§ FIFO (first-in-first-out) policy
§ Insert freed block at the end of the free list

§ Pro: simple and constant time
§ Con: studies suggest fragmentation is worse than address ordered

¢ Address-ordered policy
§ Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)
§ Con: requires search
§ Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

¢ Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic
Allocated Allocated

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

¢ Splice out adjacent successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphicAllocated Free

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

¢ Splice out adjacent predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
AllocatedFree

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

¢ Splice out adjacent predecessor and successor blocks, coalesce
all 3 blocks, and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic
Free Free

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Advice: An Implementation Trick

¢ Use circular, doubly-linked list
¢ Support multiple approaches with single data structure
¢ First-fit vs. next-fit

§ Either keep free pointer fixed or move as search list

¢ LIFO vs. FIFO
§ Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
¢ Comparison to implicit list:

§ Allocate is linear time in number of free blocks instead of all blocks
§ Much faster when most of the memory is full

§ Slightly more complicated allocate and free because need to splice
blocks in and out of the list

§ Some extra space for the links (2 extra words needed for each block)
§ Does this increase internal fragmentation?

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Memory-related perils and pitfalls

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
¢ Each size class of blocks has its own free list

¢ Often have separate classes for each small size
¢ For larger sizes: One class for each size [𝟐𝒊 + 𝟏, 𝟐𝒊"𝟏]
¢ The list for the largest blocks must have no upper limit

§ (well, 2!")

16

32-48

64–inf

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
¢ Given an array of free lists, each one for some size class

¢ To allocate a block of size n:
§ Search appropriate free list for block of size 𝑚 ≥ 𝑛 (i.e., first fit)
§ If an appropriate block is found:

§ Split block and place fragment on appropriate list
§ If no block is found, try next larger class

§ Repeat until block is found

¢ If no block is found:
§ Request additional heap memory from OS (using sbrk())
§ Allocate block of n bytes from this new memory
§ Place remainder as a single free block in appropriate size class.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
¢ To free a block:

§ Coalesce and place on appropriate list

¢ Advantages of seglist allocators vs. non-seglist allocators
(both with first-fit)
§ Higher throughput

§ log time for power-of-two size classes vs. linear time
§ Better memory utilization

§ First-fit search of segregated free list approximates a best-fit
search of entire heap.

§ Extreme case: Giving each block its own size class is equivalent to
best-fit.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

¢ D. Knuth, The Art of Computer Programming, vol 1, 3rd edition,
Addison Wesley, 1997
§ The classic reference on dynamic storage allocation

¢ Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
§ Comprehensive survey
§ Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz

https://canvas.cmu.edu/courses/30386/quizzes

https://canvas.cmu.edu/courses/30386/quizzes

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Explicit free lists
¢ Segregated free lists
¢ Memory-related perils and pitfalls

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls
¢ Dereferencing bad pointers
¢ Reading uninitialized memory
¢ Overwriting memory
¢ Referencing nonexistent variables
¢ Freeing blocks multiple times
¢ Referencing freed blocks
¢ Failing to free blocks

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
¢ The classic scanf bug

int val;

...

scanf("%d", val);

case 'd': {
int *valp = va_arg(ap, int *);
*valp = (int)strtol(valbuf, &endp, 10);

}

Crash here …
if you’re lucky

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
¢ Assuming that heap data is initialized to zero

¢ Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Allocating the (possibly) wrong sized object

¢ Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Off-by-one errors

char **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Not checking the max string size

¢ Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Referencing a pointer instead of the object it points to

¢ What gets decremented?
§ (See next slide)

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . ++ -- left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

¢ ->, (), and [] have high precedence, with * and & just below
¢ Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Unary

Binary

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
¢ Referencing a pointer instead of the object it points to

¢ Same effect as
§ size--;

¢ Rewrite as
§ (*size)--;

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
¢ Forgetting that local variables disappear when a function

returns

int *foo () {
int val;

return &val;
}

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
¢ Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
¢ Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
¢ Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
¢ Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...

free(head);
return;

}

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
¢ Debugger: gdb

§ Good for finding bad pointer dereferences
§ Hard to detect the other memory bugs

¢ Data structure consistency checker
§ Runs silently, prints message only on error
§ Use as a probe to zero in on error

¢ Binary translator: valgrind
§ Powerful debugging and analysis technique
§ Rewrites text section of executable object file
§ Checks each individual reference at runtime

§ Bad pointers, overwrites, refs outside of allocated block

¢ glibc malloc contains checking code
§ setenv MALLOC_CHECK_ 3

