
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Details

15-213/14-513/15-513: Introduction to Computer Systems
17th Lecture, November 1, 2022

Instructors:
Dave Andersen (15-213)
Zack Weinberg (15-213)
Brian Railing (15-513)
David Varodayan (14-513)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Review: Virtual Addressing
¢ Each process has its own virtual address space
¢ Page tables map virtual to physical addresses
¢ Physical memory can be shared among processes

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1

VP k
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with one-level page tables)

2!" byte
address
space

One 64-bit array element
for each 4096-byte page
= !!#$

"#$% ⋅ 8 bytes
= 2&$ bytes
= 512 gigabytes
for one page table

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy

Level 1
page table

Level 2
page tables

VP 1024

...

VP 2047

VP 2048

...

VP 3072

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023
null PTEs

PTE 1023

VP 1048576

Virtual
memory

1020 more
null PTEs

PTE 1

PTE 2

PTE 0 (null)

PTE 1023

2048 allocated pages
for code and data

1021 · 1024 + 1023
unallocated pages

1 allocated page
for the stack

VP 0…1023
(unmapped)

VP 3073…
1048575

(unmapped)

1024 unallocated pages

32-bit address space, 4-byte PTEs, 4096-byte pages

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Translating with a k-level Page Table

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with k-level page tables)

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PP
N

PPOPPN

VIRTUAL ADDRESS

... ...

the Level 1
page table

a Level 2
page table

a Level k
page table

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Cache
miss!

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Speeding up Translation with a TLB

Page table entries (PTEs) are cached
like any other memory word
▪ PTEs may be evicted by other data references
▪ PTE hit still costs cache delay

Solution: Translation Lookaside Buffer (TLB)
▪ Dedicated cache for page table entries
▪ TLB hit = page table not consulted
▪ Can be fairly small: one TLB entry covers 4k or more

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Accessing the TLB
MMU uses the VPN portion of the virtual address to
access the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag
of line within set

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Hit

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA

4

Data
5

A TLB hit eliminates memory accesses to the page table

TLB

2

VPN

PTE

3

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB Miss

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Example
¢ Addressing

! 14-bit virtual addresses
! 12-bit physical address
! Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN
Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB
¢ 16 entries
¢ 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Page Table
¢ Only showing the first 16 entries (out of 256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

0x0D → 0x2D

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Simple Memory System Cache
¢ 16 lines, 4-byte cache line size
¢ Physically addressed
¢ Direct mapped

V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

End-to-end Core i7 Address Translation

CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB

miss

TLB

hit

Physical

address
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this
PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Page Table Translation

CR3

Physical
address
of page

Physical
address
of L1 PT

9

VPO
9 12 Virtual

address

L4 PT
Page
table

L4 PTE

PPN PPO
40 12 Physical

address

Offset into
physical and
virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper
directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

¢ Observation
! Bits that determine CI identical in virtual and physical address
! Can index into cache while address translation taking place
! Generally we hit in TLB, so PPN bits (CT bits) available quickly
! “Virtually indexed, physically tagged”
! Cache carefully sized to make this possible

Physical
address

(PA)

CT CO
40 6

CI
6

Virtual
address

(VA)
VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI

L1
Cache

CT Tag Check

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 2

Hint: Write down the address parts
(starting w/tag) in binary. You can build
up the address and then convert it back to
hex at the end.

Python makes a good hex converter if you
want to double check your brain version:

hex(0b01110001) " ‘0x71’

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Paging (aka Swapping)
¢ Use (part of) disk as additional working memory
¢ Adds another layer to the memory hierarchy, but…

! “Main memory” is 10–1000x slower than the caches
! Disk is 10,000x slower than main memory
! Enormous miss penalty drives design

¢ Consequences
! Large page (block) size: 4KB and bigger
! Always write-back and fully associative
! Managed entirely in software

! Plenty of time to execute complex replacement algorithms

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

¢ Paging is terribly inefficient
¢ Only works because of locality
¢ At any point in time, programs tend to access a set of

active virtual pages called the working set
! Programs with good temporal locality will have small working sets

¢ If working set size < main memory size
! Good performance after compulsory misses

¢ If working set size > main memory size
! Thrashing: Performance meltdown, computer spends most of its

time copying pages in and out of RAM
! In the worst case, no forward progress at all (livelock)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files
¢ Paging = every page of a program’s physical RAM is

backed by some page of disk*
¢ Normally, those pages belong to swap space
¢ But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical
memory

Process
virtual memory

File on disk

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Mapped Files

Swap space

Physical
memory

Process 1
virtual memory

File on disk

Process 2
virtual memory

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing
¢ fork creates a new

process by copying the
entire address space
of the parent process
! That sounds slow
! It is slow

Swap space

Physical
memory

Parent
virtual memory

File on disk

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

Swap space

Physical
memory

Parent
virtual memory

File on disk

Child
virtual memory

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Copy-on-write sharing

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults

Swap space

Physical
memory

Parent
virtual memory

File on disk

Child
virtual memory

Child
wrote to
this page

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3

