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Review: Virtual Addressing
¢ Each process has its own virtual address space
¢ Page tables map virtual to physical addresses
¢ Physical memory can be shared among processes
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Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The problem (with one-level page tables)

2!" byte 
address 
space

One 64-bit array element
for each 4096-byte page
= !!#$

"#$% ⋅ 8 bytes
= 2&$ bytes 
= 512 gigabytes
for one page table



Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Two-Level Page Table Hierarchy

Level 1
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Translating with a k-level Page Table
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The problem (with k-level page tables)
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Speeding up Translation with a TLB

Page table entries (PTEs) are cached
like any other memory word
▪ PTEs may be evicted by other data references
▪ PTE hit still costs cache delay

Solution: Translation Lookaside Buffer (TLB)
▪ Dedicated cache for page table entries
▪ TLB hit = page table not consulted
▪ Can be fairly small: one TLB entry covers 4k or more
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Accessing the TLB
MMU uses the VPN portion of the virtual address to 
access the TLB:

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

T = 2t sets

TLBI selects the set

TLBT matches tag 
of line within set
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TLB Hit
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A TLB hit eliminates memory accesses to the page table
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TLB Miss

MMU Cache/
MemoryPA

Data
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CPU Chip

PTE
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5
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VPN

4
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3

A TLB miss incurs additional memory accesses (PTE lookup)
Fortunately, TLB misses are rare. Why?
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Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3
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Simple Memory System Example
¢ Addressing

! 14-bit virtual addresses
! 12-bit physical address
! Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN
Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset
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0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System TLB
¢ 16 entries
¢ 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0 0 0 0 1 1 0 1

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
Translation Lookaside Buffer (TLB)

VPN = 0b1101 = 0x0D
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Simple Memory System Page Table
¢ Only showing the first 16 entries (out of 256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

0x0D → 0x2D
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Simple Memory System Cache
¢ 16 lines, 4-byte cache line size
¢ Physically addressed
¢ Direct mapped

V[0b00001101101001] = V[0x369]
P[0b101101101001] = P[0xB69] = 0x15

1
11

0
10

1
9

1
8

0
7

1
6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx

1 0 1 0 0 1

03DFC2111167
––––0316

1DF0723610D5

098F6D431324
––––0363

0804020011B2
––––0151

112311991190
B3B2B1B0ValidTagIdx

––––014F
D31B7783113E
15349604116D

––––012C
––––00BB

3BDA159312DA
––––02D9

8951003A1248
B3B2B1B0ValidTagIdx
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TLB

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

Address Translation Example

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address
11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
0001010 11010

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet
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Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way 

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2  unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU 
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other 
cores

To I/O
bridge
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End-to-end Core i7 Address Translation

CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page tables

TLB

miss

TLB

hit

Physical

address 
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and 

main memory

L1 d-cache 

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE
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Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table. Significant fields:
P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table. 

A:  Reference bit (set by MMU on reads and writes, cleared by software).

PS:  Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

Page table physical base address: 40 most significant bits of physical page table 
address (forces page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this 
PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263
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Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant fields:
P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software) 

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address 
(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263
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Core i7 Page Table Translation

CR3

Physical  
address
of page

Physical 
address
of L1 PT

9

VPO
9 12 Virtual 

address

L4 PT
Page 
table

L4 PTE

PPN PPO
40 12 Physical 

address

Offset into 
physical and 
virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT
Page middle

directory

L3 PTE

L2 PT
Page upper
directory

L2 PTE

L1 PT
Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB 
region 

per entry

1 GB 
region 

per entry

2 MB 
region 

per entry

4 KB
region 

per entry
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Cute Trick for Speeding Up L1 Access

¢ Observation
! Bits that determine CI identical in virtual and physical address
! Can index into cache while address translation taking place
! Generally we hit in TLB, so PPN bits (CT bits) available quickly
! “Virtually indexed, physically tagged”
! Cache carefully sized to make this possible

Physical 
address 

(PA)

CT CO
40 6

CI
6

Virtual 
address 

(VA)
VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI

L1 
Cache

CT Tag Check
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Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3
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Activity 2

Hint: Write down the address parts 
(starting w/tag) in binary. You can build
up the address and then convert it back to
hex at the end.

Python makes a good hex converter if you 
want to double check your brain version:

hex(0b01110001) " ‘0x71’
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Paging (aka Swapping)
¢ Use (part of) disk as additional working memory
¢ Adds another layer to the memory hierarchy, but…

! “Main memory” is 10–1000x slower than the caches
! Disk is 10,000x slower than main memory
! Enormous miss penalty drives design

¢ Consequences
! Large page (block) size: 4KB and bigger
! Always write-back and fully associative
! Managed entirely in software

! Plenty of time to execute complex replacement algorithms
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Locality to the Rescue Again!

¢ Paging is terribly inefficient
¢ Only works because of locality
¢ At any point in time, programs tend to access a set of 

active virtual pages called the working set
! Programs with good temporal locality will have small working sets

¢ If working set size < main memory size
! Good performance after compulsory misses

¢ If working set size > main memory size
! Thrashing: Performance meltdown, computer spends most of its 

time copying pages in and out of RAM
! In the worst case, no forward progress at all (livelock)
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Memory-Mapped Files
¢ Paging = every page of a program’s physical RAM is 

backed by some page of disk*
¢ Normally, those pages belong to swap space
¢ But what if some pages were backed by … files?

* This is how it used to work 20 years ago.
Nowadays, not always true.
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Memory-Mapped Files

Swap space

Physical
memory

Process
virtual memory

File on disk
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Memory-Mapped Files

Swap space

Physical
memory

Process 1
virtual memory

File on disk

Process 2
virtual memory
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Copy-on-write sharing
¢ fork creates a new 

process by copying the 
entire address space
of the parent process
! That sounds slow
! It is slow

Swap space

Physical
memory

Parent
virtual memory

File on disk

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults 
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Copy-on-write sharing

Swap space

Physical
memory

Parent
virtual memory

File on disk

Child
virtual memory

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults 
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Copy-on-write sharing

¢ Clever trick:
! Just duplicate the page tables
! Mark everything read only
! Copy only on write faults 

Swap space

Physical
memory

Parent
virtual memory

File on disk

Child
virtual memory

Child 
wrote to 
this page
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Today
¢ Multi-level page tables
¢ Translation lookaside buffers
¢ Activity 1
¢ Concrete examples of virtual memory systems

! “Simple memory system” from CSAPP 9.6.4
! Intel Core i7

¢ Activity 2
¢ Nifty things virtual memory makes possible

! Paging/swapping (disk as extra RAM)
! Memory-mapped files (RAM as cache for disk)
! Copy-on-write sharing

¢ Activity 3


