
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

15-213/14-513/15-513: Introduction to Computer Systems
24th Lecture, November 29, 2022

Instructors:

Dave Andersen (15-213)

Zack Weinberg (15-213)

Brian Railing (15-513)

David Varodayan (14-513)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Final Exam Logistics

 Friday, 16 December, 5:30–8:30pm (Pgh time)

 Go to Posner Hall first floor main corridor

 We will meet you and direct you to rooms

Meet TAs
here

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Final Exam Logistics

 Make-up final exam session Monday 19 December
▪ Location and time TBD

 Final exam review session: not yet scheduled

 If you have disability accommodations
▪ Make sure they’re on file with the disabilities office

▪ Also fill out the form below

▪ You will take the exam at the Disability Resources Testing Center

(5136 Margaret Morrison Street); do not go to Posner

 Need any sort of adjustment to exam logistics?
▪ https://forms.gle/UVutWayszmxM89JP9

 More details:
▪ https://piazza.com/class/l6ff8gpm6nt247/post/1950

▪ https://www.cs.cmu.edu/~213/exams.html

https://forms.gle/UVutWayszmxM89JP9
https://piazza.com/class/l6ff8gpm6nt247/post/1950
https://www.cs.cmu.edu/~213/exams.html

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing and Data Races

 Fixing Data Races
▪ Mutexes

▪ Semaphores

▪ Atomic memory operations

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + (code, data, and kernel context)

Shared libraries

Run-time heap

0

Read/write dataThread context:

Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures
Descriptor table
brk pointer

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
Memory is shared between all threads

Don’t let picture confuse you!

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:

VM structures
Descriptor table
brk pointer

Thread 1 context:

Data registers
Condition codes
SP1

PC1

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing and Data Races

 Fixing Data Races
▪ Mutexes

▪ Semaphores

▪ Atomic memory operations

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

 Question: Which variables in a threaded C program are
shared?
▪ The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

 Requires answers to the following questions:
▪ What is the memory model for threads?

▪ How are instances of variables mapped to memory?

▪ How many threads might reference each of these instances?

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Conceptual

 Multiple threads run within the context of a single process

 Each thread has its own separate thread context
▪ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
▪ Code, data, heap, and shared library segments of the process virtual address space

▪ Open files and installed handlers

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1
(private) Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2
(private)

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Actual

 Separation of data is not strictly enforced:
▪ Register values are truly separate and protected, but…

▪ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Thread 1 context:

Data registers
Condition codes
SP1

PC1

stack 1

Thread 1
(private)

Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:

Data registers
Condition codes
SP2

PC2

stack 2

Thread 2
(private)

Virtual Address Space

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Ways to Pass Thread Arg

 Malloc/free
▪ Producer malloc’s space, passes pointer to pthread_create

▪ Consumer dereferences pointer, frees space

▪ Always works; necessary for passing large amounts of data

 Cast of int
▪ Producer casts an int/long to void*, passes to pthread_create

▪ Consumer casts void* argument back to int/long

▪ Works for small amounts of data (one number)

 INCORRECT: Pointer to stack slot
▪ Producer passes address to producer’s stack in pthread_create

▪ Consumer dereferences pointer

▪ Why is this unsafe?

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {

long i;

pthread_t tids[N];

for (i = 0; i < N; i++)

Pthread_create(&tids[i],

NULL,

thread,

&hist[i]);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

check();

}

void *thread(void *vargp)

{

*(int *)vargp += 1;

return NULL;

}

Passing an argument to a thread

• Each thread receives a
unique pointer

void check(void) {

for (int i=0; i<N; i++) {

if (hist[i] != 1) {

printf("Failed at %d\n", i);

exit(-1);

}

}

printf("OK\n");

}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {

long i;

pthread_t tids[N];

for (i = 0; i < N; i++)

Pthread_create(&tids[i],

NULL,

thread,

(void *)i);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

check();

}

void *thread(void *vargp)

{

hist[(long)vargp] += 1;

return NULL;

}

Passing an argument to a thread – Also OK

• Each thread receives a
unique array index

• Casting from long to void*
and back is safe

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {

long i;

pthread_t tids[N];

for (i = 0; i < N; i++)

long* p = Malloc(sizeof(long));

*p = i;

Pthread_create(&tids[i],

NULL,

thread,

p);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

check();

}

void *thread(void *vargp)

{

hist[*(long *)vargp] += 1;

free(vargp);

return NULL;

}

Passing an argument to a thread – Also OK

• Each thread receives a
unique array index

• Malloc in parent, free in
thread

• Necessary if passing structs

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {

long i;

pthread_t tids[N];

for (i = 0; i < N; i++)

Pthread_create(&tids[i],

NULL,

thread,

&i);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

check();

}

void *thread(void *vargp)

{

hist[*(long *)vargp] += 1;

return NULL;

}

Passing an argument to a thread – WRONG!

• Each thread receives
the same pointer, to i
in main

• Data race: each thread
may or may not read
a unique array index
from i in main

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

 Question: Which variables in a threaded C program are
shared?
▪ The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

 Requires answers to the following questions:
▪ What is the memory model for threads?

▪ How are instances of variables mapped to memory?

▪ How many threads might reference each of these instances?

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

 Global variables
▪ Variable declared outside of a function

▪ Virtual memory contains exactly one instance of any global variable

 Local automatic variables
▪ Variable declared inside function without static attribute

▪ Each thread stack contains one instance of each local variable

 Local static variables
▪ Variable declared inside function with the static attribute

▪ Virtual memory contains exactly one instance of any local static
variable.

 errno is special
▪ Declared outside a function, but each thread stack contains one instance

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])

{

long i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Mapping Variable Instances to Memory

sharing.c

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])

{

long i;

pthread_t tid;

char *msgs[2] = {

"Hello from foo",

"Hello from bar"

};

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL,

thread,

(void *)i);

Pthread_exit(NULL);

}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local auto vars: 1 instance (i.m, msgs.m, tid.m)

Local auto var: 2 instances (
myid.p0 [peer thread 0’s stack],
myid.p1 [peer thread 1’s stack]

)

sharing.c

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

char **ptr; /* global var */

int main(int main, char *argv[]) {

long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",

"Hello from bar" };

ptr = msgs;

for (i = 0; i < 2; i++)

Pthread_create(&tid,

NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)

{

long myid = (long)vargp;

static int cnt = 0;

printf("[%ld]: %s (cnt=%d)\n",

myid, ptr[myid], ++cnt);

return NULL;

}

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis

 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

◼ ptr, cnt, and msgs are shared

◼ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr

cnt

i.m

msgs.m

myid.p0

myid.p1

yes yes yes

no yes yes
yes no no

yes yes yes
no yes no
no no yes

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads

 Shared variables are handy...

 …but you risk data races
and synchronization errors.

Coding demo 1:
Counting to 20,000 incorrectly
(with threads)

static unsigned long cnt = 0;

void *incr_thread(void *arg) {

unsigned long i;

unsigned long niters =

(unsigned long) arg;

for (i = 0; i < niters; i++) {

cnt++;

}

}

int main(int argc, char **argv) {

unsigned long niters =

strtoul(argv[1], NULL, 10);

pthread_t t1, t2;

Pthread_create(&t1, NULL,

incr_thread,

(void *)niters);

Pthread_create(&t2, NULL,

incr_thread,

(void *)niters);

Pthread_join(&t1, NULL);

Pthread_join(&t2, NULL);

if (cnt != 2*niters) {

printf("FAIL: cnt=%lu not %lu\n",

cnt, 2*niters;

return 1;

} else {

printf("OK: cnt=%lu\n", cnt);

return 0;

}

}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)

cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

movq cnt(%rip),%rdx

addq $1, %rdx

movq %rdx, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: Any interleaving of instructions is possible,

and some give an unexpected result!
▪ Ii denotes that thread i executes instruction I

▪ %rdxi is the content of %rdx in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

 How about this ordering?

 We can analyze the behavior using a progress graph

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0

1
1 1

1
1 1

1 Oops!
1

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.

(L1, S2)

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz time!

https://canvas.cmu.edu/courses/30386/quizzes/86859

https://canvas.cmu.edu/courses/30386/quizzes/86859

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing and Data Races

 Fixing Data Races
▪ Mutexes

▪ Semaphores

▪ Atomic memory operations

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
▪ Need to guarantee mutually exclusive access to each critical section.

Coding demo 2:
Counting to 20,000 correctly
(with threads and a mutex)

static unsigned long cnt = 0;

static pthread_mutex_t lock =

PTHREAD_MUTEX_INITIALIZER;

void *incr_thread(void *arg) {

unsigned long i;

unsigned long niters =

(unsigned long) arg;

for (i = 0; i < niters; i++) {

pthread_mutex_lock(&lock);

cnt++;

pthread_mutex_unlock(&lock);

}

}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)

 Mutex: opaque object which is either locked or unlocked
▪ Boolean value, but cannot do math on it

▪ Starts out unlocked

▪ Two operations:

 lock(m)
▪ If the mutex is currently not locked, lock it and return

▪ Otherwise, wait until it becomes unlocked, then retry

 unlock(m)
▪ Can only be called when mutex is locked, by the code that locked it

▪ Change mutex to unlocked

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mutex implementation (partial)

/**

* void pthread_mutex_lock(pthread_mutex_t *mtx)

* Lock the mutex pointed to by MTX. If it is already locked,

* first sleep until it becomes unlocked.

*/

pthread_mutex_lock:

call gettid // current thread ID now in %eax

mov $1, %edx // increment

lock xadd %edx, MUTEX_CONTENDERS(%rdi)

// %edx now holds _previous_ value of mtx->contenders

test %edx, %edx

jne .Lcontended

// The lock was unlocked, and now we hold it.

mov %eax, MUTEX_HOLDER(%rdi)

ret

.Lcontended:

// Sleep until another thread calls pthread_mutex_unlock

// (30 more machine instructions and a system call)

Just one of many ways to implement (discussed in 15-410, -418, etc)
All require assistance from the CPU (special instructions)

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1

Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

Unsafe region

0 1

0

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Cost of Mutexes

0.48 s

15 s

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing and Data Races

 Fixing Data Races
▪ Mutexes

▪ Semaphores

▪ Atomic memory operations

Coding demo 3:
Counting to 20,000 correctly
(with threads and a semaphore)

static unsigned long cnt = 0;

static sem_t lock;

void *incr_thread(void *arg) {

unsigned long i;

unsigned long niters =

(unsigned long) arg;

for (i = 0; i < niters; i++) {

sem_wait(&lock);

cnt++;

sem_post(&lock);

}

}

int main(int argc, char **argv) {

unsigned long niters =

strtoul(argv[1], NULL, 10);

sem_init(&lock, 0, 1);

// ...

}

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores

 Semaphore: generalization of mutex
▪ Unsigned integer value, but cannot do math on it.

▪ Created with some value >= 0

▪ Two operations:

 P(s) [“Prolaag,” Dutch shorthand for “try to reduce”]
▪ If s is zero, wait for a V operation to happen.

▪ Then subtract 1 from s and return.

 V(s) [“Verhogen,” Dutch for “increase”]
▪ Add 1 to s.

▪ If there are any threads waiting inside a P operation,
resume one of them

 Unlike mutexes, no requirement to call P before calling V

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

int sem_wait(sem_t *s); /* P(s) */

int sem_post(sem_t *s); /* V(s) */

int sem_init(sem_t *s, int pshared, unsigned int val);

Share among processes?
(normally you want to
pass zero, see manpage
for details)

Initial semaphore value

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphore implementation (partial)

/**

* void sem_wait(sem_t *sem)

* Decrement the count of the semaphore pointed to by SEM. If this

* would make the count negative, first sleep until it is possible to

* decrement the count without making it negative.

*/

sem_wait:

mov $-1, %edx // decrement

lock xadd %edx, SEM_COUNT(%rdi)

// %edx now holds _previous_ value of sem->count

test %edx, %edx

jle .Lclosed

// The semaphore was open.

ret

.Lclosed:

// Sleep until another thread calls sem_post

// (30 more machine instructions and a system call)

Suspiciously similar to a mutex, huh?
(This implementation makes sem_post do most of the work)

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The cost of semaphores

0.48 s

15 s

27.6 s

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

 Threads review

 Sharing and Data Races

 Fixing Data Races
▪ Mutexes

▪ Semaphores

▪ Atomic memory operations

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atomic memory operations

 Special hardware instructions
▪ “Test and set,” “compare and swap”, “exchange and add”, …

▪ Do a read-modify-write on memory; hardware prevents data races

▪ Used to implement mutexes, semaphores, etc.

 Not going to get into details, but…
▪ Wouldn’t it be nice if we could use them directly?

▪ Especially when we just want to increment a counter?

Coding demo 4:
Counting to 20,000 correctly
(with threads and C2011 atomics)

static _Atomic unsigned long cnt = 0;

void *incr_thread(void *arg) {

unsigned long i;

unsigned long niters =

(unsigned long) arg;

for (i = 0; i < niters; i++) {

cnt++;

}

}

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)

cnt++;

C code

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

movq cnt(%rip),%rdx

addq $1, %rdx

movq %rdx, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Assembly (unsigned long)

movq (%rdi), %rcx

testq %rcx,%rcx

jle .L2

movl $0, %eax

.L3:

lock addq $1, cnt(%rip)

addq $1, %rax

cmpq %rcx, %rax

jne .L3

.L2:

Assembly (_Atomic unsigned long)

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The cost of atomic memory operations

0.48 s

15 s

27.6 s

3.41 s

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Access shared variables with care to avoid data races.
▪ Crucial to understand which variables are shared in the first place

▪ Avoid sharing, if you can

▪ Avoid writing from multiple threads, if you can

 Mutexes help, but…
▪ They’re slow

▪ (Next time: They can cause problems as well as solve them)

 Don’t use a semaphore when a mutex will do
▪ They’re even slower

▪ (Next time: When is a semaphore actually useful?)

 Atomic memory ops are handy, but…
▪ The hardware might not provide the operation you need

▪ (Later courses: Tricky to use correctly)

