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Announcements

 Proxy lab checkpoint due today (Dec. 1)
▪ Remember to sign up for code reviews

 Proxy lab final due in one week (Dec. 8)
▪ Will not be code reviewed.  Concentrate on studying for exams.

 Final exam Dec. 16
▪ Details: https://piazza.com/class/l6ff8gpm6nt247/post/1950

▪ Accommodations form: https://forms.gle/UVutWayszmxM89JP9

https://piazza.com/class/l6ff8gpm6nt247/post/1950
https://forms.gle/UVutWayszmxM89JP9
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Today

 Review: Races, Mutual Exclusion

 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation

 Thread-Safe API Design
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Races

 A race occurs when correctness of the program depends on one 
thread reaching point x before another thread reaches point y

int cnt;

int main(int argc, char** argv) {

pthread_t t1, t2;

Pthread_create(&t1, NULL, thread, NULL);

Pthread_create(&t2, NULL, thread, NULL);

Pthread_join(t1, NULL);

Pthread_join(t2, NULL);

return (counter != 20000);

}

/* thread routine */

void *thread(void *vargp) {

for (int i = 0; i < 10000; i++)

cnt++;

return NULL;

}
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Thread 1
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Races

 Some races can be fixed with mutual exclusion

int cnt;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int main(int argc, char** argv) {

pthread_t t1, t2;

Pthread_create(&t1, NULL, thread, NULL);

Pthread_create(&t2, NULL, thread, NULL);

Pthread_join(t1, NULL);

Pthread_join(t2, NULL);

return (counter != 20000);

}

void *thread(void *vargp) {

for (int i = 0; i < 10000; i++) {

pthread_mutex_lock(&lock);

cnt++;

pthread_mutex_unlock(&lock);

}

return NULL;

}
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Races

 Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

return 0;

}

/* thread routine */

void *thread(void *vargp) {

int myid = *(int *)vargp;

printf("Hello from thread %d\n", myid);

return NULL;

}
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Races

 Not all races can be addressed with mutual exclusion

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

return 0;

}

/* thread routine */

void *thread(void *vargp) {

int myid = *(int *)vargp;

printf("Hello from thread %d\n", myid);

return NULL;

}

i=0 &i PC i++

start

myid =

printf

Parent

Thread
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Races

 This race can be fixed by copying data

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, (void *)i);

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

return 0;

}

/* thread routine */

void *thread(void *vargp) {

int myid = (int)vargp;

printf("Hello from thread %d\n", myid);

return NULL;

}
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Races

 This race can also be fixed with a semaphore
sem_t sem;

int main(int argc, char** argv) {

pthread_t tid[N];

int i;

Sem_init(&sem, 0, 0); // initially closed

for (i = 0; i < N; i++) {

Pthread_create(&tid[i], NULL, thread, &i);

sem_wait(&sem);

}

for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);

return 0;

}

void *thread(void *vargp) {

int myid = *(int *)vargp;

sem_post(&sem);

printf("Hello from thread %d\n", myid);

return NULL;

}
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Not all races involve threads

 Time of check to time of use (TOCTOU)

 Fix: Don’t check, just use (but be ready for failure)

if (access("myfile.txt", R_OK) == 0) {

FILE *fp = fopen("myfile.txt", "r");

while (fgets(fp, buf, sizeof buf) != NULL)

process_line(buf);

fclose(fp);

} else {

fprintf(stderr, "myfile.txt not found\n");

}

Check
Use

$ rm myfile.txt

FILE *fp = fopen("myfile.txt", "r");

if (fp) {

while (fgets(fp, buf, sizeof buf) != NULL)

process_line(buf);

fclose(fp);

} else {

fprintf(stderr, "myfile.txt: %s\n", strerror(errno));

}
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Races involving signal handlers

 Event happens earlier than anticipated
void sigchld_handler(int unused) {

int status;

pid_t pid;

while ((pid = waitpid(-1, &status, WNOHANG|WUNTRACED)) > 0)

job_status_change(pid, status);

}

void start_fg_job(char **argv) {

pid_t pid = fork();

if (pid == -1) {

perror("fork");

return;

} else if (pid == 0) {

execve(argv[0], argv, environ);

perror("execve");

exit(127);

} else {

add_job(pid, argv);

}

}

SIGCHLD delivered
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Race Elimination
 Don’t share state

▪ e.g. use malloc to generate separate copy of argument for each 
thread

 Don’t check before using
▪ Attempt to use, see if it failed

 Use synchronization primitives
▪ Which synchronization primitive? Depends on the situation
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 Deadlock

 Semaphores, Events, and Queues

 Reader-Writer Locks and Starvation
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Deadlock

 A program is deadlocked when 
it is waiting for an event which 
cannot ever happen
▪ Mathematical impossibility, not 

just practical

 Most common form:
▪ Thread A is waiting for thread B to 

do something

▪ Thread B is waiting for thread A to 
do something

▪ Neither can make forward progress
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Deadlock caused by wrong locking order
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);

pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);

pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {

pthread_mutex_lock(&mB);

pthread_mutex_lock(&mA);

// do stuff ...

pthread_mutex_unlock(&mB);

pthread_mutex_unlock(&mA);

}

Live coding demo: deadlocks
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Deadlock Visualized in Progress Graph

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state where each 
thread is waiting for the other 
to release a lock 

Other trajectories luck out and 
skirt the deadlock region

Unfortunate fact: trajectory 
variations may mean deadlock 
bugs are nondeterministic
(don’t always manifest, 
making them hard to debug)
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U(b)
Forbidden region
for b

Forbidden region
for a

Deadlock state: 
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up or right –
both threads 
are stuck
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region
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Fix this deadlock with consistent ordering
void *thread_1(void *arg) {

pthread_mutex_lock(&mA);

pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mA);

pthread_mutex_unlock(&mB);

}

void *thread_2(void *arg) {

pthread_mutex_lock(&mA);

pthread_mutex_lock(&mB);

// do stuff ...

pthread_mutex_unlock(&mB);

pthread_mutex_unlock(&mA);

}

L(a) U(b)L(b) U(a)

U(a)

L(a)

L(b)

U(b)
Forbid-
den 
region
for b

Forbidden region
for a

Always possible to move
up or move right 

Inconsistent unlock order
does not matter
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Recall: Semaphores

 Integer value, always >= 0

 P(s) operation (aka sem_wait)

▪ If s is zero, wait for a V operation to happen.

▪ Then subtract 1 from s and return.

 V(s) operation (aka sem_post)

▪ Add 1 to s.

▪ If there are any threads waiting inside a P operation,
resume one of them

 Any thread may call P; any thread may call V; no ordering 
requirements
▪ Key difference from mutexes
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Semaphores for Events

 Remember this program from Tuesday’s quiz?

 Let’s fix it.

 With semaphores.

#define N 4

long *pointers[N];

void *thread(void *vargp) {

long myid = (long) vargp;

pointers[myid] = &myid;

sleep(2);

return NULL;

}

int main(void) {

long i;

pthread_t tids[N];

for (i = 0; i < N; i++)

Pthread_create(&tids[i], NULL,

thread, (void *) i);

sleep(1);

for (i = 0; i < N; i++)

printf("Thread #%ld has "

"local value %ld\n",

i, *pointers[i]);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

return 0;

}

Live coding demo: event semaphores
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Semaphores for Events
#define N 4

long *pointers[N];

sem_t ready[N];

sem_t finish;

void *thread(void *vargp) {

long myid = (long) vargp;

pointers[myid] = &myid;

sem_post(&ready[myid]);

sem_wait(&finish);

return NULL;

}

int main(void) {

long i;

pthread_t tids[N];

Sem_init(&finish, 0, 0);

for (i = 0; i < N; i++) {

Sem_init(&ready[i], 0, 0);

Pthread_create(&tids[i], NULL,

thread, (void *) i);

}

for (i = 0; i < N; i++) {

sem_wait(&ready[i]);

printf("Thread #%ld has "

"local value %ld\n",

i, *pointers[i]);

}

for (i = 0; i < N; i++)

sem_post(&finish);

for (i = 0; i < N; i++)

Pthread_join(tids[i], NULL);

return 0;

}
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Queues, Producers, and Consumers

 Common synchronization pattern:
▪ Producer waits for empty slot, inserts item in queue, and notifies consumer

▪ Consumer waits for item, removes it from queue, and notifies producer

 Examples
▪ Multimedia processing:

▪ Producer creates video frames, consumer renders them 

▪ Event-driven graphical user interfaces

▪ Producer detects mouse clicks, mouse movements, and keyboard hits 
and inserts corresponding events in queue

▪ Consumer retrieves events from queue and paints the display

producer
thread

shared
queue

consumer
thread
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Producer-Consumer on 1-entry Queue

 Maintain two semaphores: full + empty

empty
buffer

0

full

1

empty

full
buffer

1

full

0

empty
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Why 2 Semaphores for 1-entry Queue?

 Consider multiple producers & multiple consumers 

 Producers will contend with each to get empty

 Consumers will contend with each other to get full

shared
queue

P1

Pn







C1

Cm







P(&shared.full);

item = shared.buf;

V(&shared.empty);

Consumers

P(&shared.empty);

shared.buf = item;

V(&shared.full);

Producers
fullempty
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Producer-Consumer on n-element Queue

 Requires a mutex and two counting semaphores:
▪ mutex: enforces mutually exclusive access to the queue’s innards

▪ slots: counts the available slots in the queue

▪ items: counts the available items in the queue

 Makes use of semaphore values > 1 (up to n)

P1

Pn







C1

Cm








Between 0 and n elements
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Readers-Writers Problem

 Problem statement:
▪ Reader threads only read the object

▪ Writer threads modify the object (read/write access)

▪ Writers must have exclusive access to the object

▪ Unlimited number of readers can access the object

 Occurs frequently in real systems, e.g.,
▪ Online airline reservation system

▪ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access
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Pthreads Reader/Writer Lock

 Data type pthread_rwlock_t

 Operations
▪ Acquire read lock

pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)

▪ Acquire write lock

pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)

▪ Release (either) lock

pthread_rwlock_unlock(pthread_rwlock_t *rwlock)

 Must be used correctly!
▪ Up to programmer to decide what requires read access and what 

requires write access
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Reader/Writer Starvation

 Thread 1 has a read lock. Thread 2 is waiting for a write 
lock. Thread 3 tries to take a read lock. What happens?

 Option 1: R2 gets read lock immediately
▪ Endless stream of overlapping readers → W waits forever

 Option 2: Writer always gets lock as soon as possible
▪ Endless stream of overlapping writers → readers wait forever

(not shown)

R1

R2

W

?

R1
W

R2

R1
W

R2
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Starvation

 A thread is starved when it makes no forward progress for 
an unacceptably long time
▪ Unlike deadlock, it’s possible for it to get unstuck eventually

▪ “Unacceptably long” depends on the application

 Algorithms that guarantee no starvation are called fair
▪ Fair R/W locks: every waiter receives the lock in first-come first-

served order (several readers can receive the lock at the same time)

▪ Fairness is more complicated to implement

▪ Fairness can mean all threads are slower than they would be in an 
unfair system (e.g. “lock convoy problem”)

R1
W

R2
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Quiz

https://canvas.cmu.edu/courses/30386/quizzes/86871

https://canvas.cmu.edu/courses/30386/quizzes/86871
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Thread-Safe APIs

 A function is thread-safe if it always produces correct 
results when called repeatedly from multiple concurrent 
threads.

 Reasons for a function not to be thread-safe:
1. Internal shared state, no locking (e.g. your malloc)

2. Internal state modified across multiple uses (e.g. rand)

3. Returns a pointer to a static variable (e.g. strtok)

4. Calls a function that does any of the above
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Thread-Unsafe Functions (Class 1)

 These functions would be thread-safe if they began with 
pthread_mutex_lock(&l) and ended with 
pthread_mutex_unlock(&l) for some lock L

 Good example: malloc, realloc, free

▪ Your implementation will crash if called from multiple concurrent 
threads

▪ The C library’s implementation won’t; it has internal locks

 Locking slows things down, of course
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Thread-Unsafe Functions (Class 2)

 Relying on persistent state across multiple function invocations
▪ Example: Random number generator that relies on static state

 Difference from class 1: locking would not fix the problem
▪ 2 threads call rand() simultaneously, both get different results than if 

only one made a sequence of calls to rand()

static unsigned int next = 1; 

/* rand: return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next*1103515245 + 12345; 

return (unsigned int)(next/65536) % 32768; 

} 

/* srand: set seed for rand() */ 

void srand(unsigned int seed) {

next = seed; 

} 
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Fixing Class 2 Thread-Unsafe Functions

 Pass state as part of argument
▪ and, thereby, eliminate static state 

 Requires API change

 Callers responsible for allocating space for state

/* rand_r - return pseudo-random integer on 0..32767 */ 

int rand_r(int *nextp) 

{ 

*nextp = *nextp*1103515245 + 12345; 

return (unsigned int)(*nextp/65536) % 32768; 

} 
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Thread-Unsafe Functions (Class 3)

 Returning a pointer  to a 
static variable

 Like class 2, locking inside 
function would not help
▪ Race between use of result

and calls from another thread

 Fix: make caller supply
space for result
▪ Requires API change

(also like class 2)

▪ Can be awkward for caller:
how much space is required?

/* Convert integer to string */

char *itoa(int x)

{

static char buf[11];

snprintf(buf, 11, "%d", x);

return buf;

}

/* Convert integer to string

(thread-safe) */

void itoa_r(int x, char *buf,

size_t bufsz)

{

snprintf(buf, bufsz, "%d", x);

}
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Thread-Unsafe Functions (Class 4)

 Calling thread-unsafe functions
▪ Any function that uses a class 1, 2, or 3 function internally is just as 

thread-unsafe as that function itself

▪ This applies transitively

 Only fix is to modify the function to use only thread-safe 
functions
▪ This may or may not involve API changes
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Thread-Safe Library Functions

 Most ISO C library functions are thread-safe
▪ Examples: malloc, free, printf, scanf

▪ Exceptions: strtok, rand, asctime, …

 Many older Unix C library functions are unsafe
▪ There is usually a safe replacement

Thread-unsafe function Class Reentrant version

asctime 3 strftime

ctime 3 strftime

localtime 3 strftime

gethostbyname 3 getaddrinfo

gethostbyaddr 3 getnameinfo

inet_ntoa 3 getnameinfo

rand 2 rand_r*

* The C library’s random number generators are all old 
and not very “strong”. Use a modern CSPRNG instead.
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Reentrant Functions

 Def: A function is reentrant if it accesses no shared 
variables when called by multiple threads. 
▪ Important subset of thread-safe functions

▪ Require no synchronization operations

▪ Only way to make a Class 2 function thread-safe is to make it 
reentrant (e.g., rand_r )

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions
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Threads / Signals Interactions

 Many library functions use lock-and-copy for thread safety
▪ malloc

▪ Free lists

▪ fprintf, printf, puts

▪ So that outputs from multiple threads don’t interleave

▪ snprintf

▪ Calls malloc internally for scratch space

 OK to interrupt them with locks held
▪ … as long as the handler doesn’t use them itself!

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
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Bad Thread / Signal Interactions

 What if:

▪ Signal received while library function holds lock

▪ Handler calls same (or related) library function

 Deadlock!
▪ Signal handler cannot proceed until it gets lock

▪ Main program cannot proceed until handler completes

 Key Point
▪ Threads employ symmetric concurrency

▪ Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

fprintf.lock()
fprintf.unlock()


