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15-213 Recitation
Malloc Part II

Your TAs
Monday, October 31st, 2022



■ Malloc Lab Checkpoint is due TOMORROW at 11:59 pm

■ Malloc Lab Final is due Nov 8th at 11:59 pm

■ 7% of final grade (+4% for checkpoint)

■ Style matters! Don’t let all of your hard work get wasted.

■ There are many different implementations and TAs will need to 

know the details behind your implementation.

■ Code Review Signups for Checkpoint Due Thursday by 11:59 

PM

■ Malloc (Final) bootcamp was yesterday - look at recording!

Logistics



Agenda

■ Logistics

■ Malloc Lab

■ Checkpoint review

■ Activity 1

■ Appendix
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Understanding Your Code

⬛ Sketch out the heap

⬛ Add Instrumentation

⬛ Use tools
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Sketch out the Heap

⬛ Start with a heap, in this case implicit list

⬛ Now try something, in this case, extend_heap
  block_t *block = payload_to_header(bp);
  write_block(block, size, false);
  // Create new epilogue header
  block_t *block_next = find_next(block);     
  write_epilogue(block_next);

4 4 4 4 6 46 40 00



Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

⬛ Here is a free block based on lectures 19 and 20
▪ Explicit pointers (will be well-defined see writeup and Piazza)

▪ This applies to ALL new fields you want inside your struct

▪ Optional boundary tags

⬛ If you make changes to your design beyond this
▪ Draw it out.

▪ If you have bugs, pictures can help the staff help you

▪ Put a picture of your data structure into your file header 
(optional, but we will be impressed)
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Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: ??
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Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

⬛ Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you 

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: ??



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

⬛ Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you 

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: Instrument your code!



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

⬛ Remember that measurements inform insights.
▪ Add temporary code to understand aspects of malloc

▪ Code can violate style rules or 128 byte limits, because it is 
temporary

⬛ Particularly important to develop insights into 
performance before making changes

▪ What is expensive throughput-wise?

▪ How much might a change benefit utilization?
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Add Instrumentation example

⬛ Searching in find_fit is often the slowest step

⬛ How efficient is your code?  How might you know?
▪ Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)
{
    block_t *block;
    for (block = heap_listp; get_size(block) > 0;
                             block = find_next(block))
    {
        if (!(get_alloc(block)) && (asize <= get_size(block)))
        {
            return block;
        }
    }
    return NULL; // no fit found
}

call_count++;

block_count++;
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Add Instrumentation cont.

⬛ What size of requests?
▪ How many 8 bytes or less?

▪ How many 16 bytes or less?

▪ What other sizes?

⬛ What else could you measure?  Why?

⬛ Remember that although the system’s performance varies
▪ The mdriver’s traces are deterministic

▪ Measured results should not change between runs
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Use tools

⬛ Use mm_checkheap()
▪ Write it if you haven’t done so already

▪ Add new invariants when you add new features

▪ Know how to use the heap checker.

▪ Why do you need a heap checker? 2 reasons.

⬛ Use gdb
▪ You can call print or mm_checkheap whenever you want in gdb. No 

need to add a whole lot of printf’s.

▪ Offers useful information whenever you crash, like backtrace.

▪ Write helper functions to print out free lists that are ONLY called 
from GDB
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Write your own traces!

⬛ Write short traces that test simple sequences of malloc 
and free

⬛ Read the README file in the traces directory and the 
writeup from the traces assignment to see how trace files 
need to be written
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mdriver-emulate

⬛ Testing for 64-bit address space

⬛ Use correctly sized masks, constants, and other variables

⬛ Be careful about subtraction between size types (may 
result in underflow/overflow)

▪ Note: there are many other issues besides this.

⬛ Reinitialize your pointers in mm_init
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Garbled Bytes

⬛ Malloc library returns a block
▪ mdriver writes bytes into payload (using memcpy)

▪ mdriver will check that those bytes are still present

▪ If malloc library has overwritten any bytes, then report garbled bytes

▪ Also checks for other kinds of bugs

⬛ Now what?

⬛ The mm_checkheap call is catching it right?

⬛ If not, we want to find the garbled address and watch it
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Garbled Bytes GDB and Contracts

⬛ Get out a laptop

⬛ Login to shark machine

⬛ wget http://www.cs.cmu.edu/~213/activities/rec9.tar

⬛ tar -xvf rec9.tar

⬛ cd rec9

⬛ mm.c is a fake implicit list implementation.
▪ Source code is based on mm.c starter code

http://www.cs.cmu.edu/~213/activities/rec9.tar
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GDB and Contracts Exercise

⬛ First, let us run without contracts and gdb
⬛ ./mdriver -c ./traces/syn-struct-short.rep 

(example output)

ERROR [trace ./traces/syn-struct-short.rep, line 16]: block 1 
(at 0x8000000a0) has 8 garbled bytes, starting at byte 16
ERROR [trace ./traces/syn-struct-short.rep, line 21]: block 4 
(at 0x800000180) has 8 garbled bytes, starting at byte 16

correctness check finished, by running tracefile 
"traces/syn-struct-short.rep".
 => incorrect.

Terminated with 2 errors
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Using watchpoints in GDB

⬛ gdb --args ./mdriver-dbg1 -c ./traces/syn-struct-short.rep
⬛ What is the first address that was garbled?

▪ Use gdb watch to find out when / what garbled it.

(gdb) watch *0x8000000a0
(gdb) run

// Keep continuing through the breaks:

// write_block()

// 4 x memcpy

Hardware watchpoint 1: *0x8000000a0

Old value = 129
New value = 32
write_block() at mm.c:333

⬛ Tells us to take a closer look at write_block()

We just broke in
after overwriting
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Contracts Exercise cont.

⬛ Now let us see what happens, when we use the file with 
contracts 

⬛ ./mdriver-dbg2 -c ./traces/syn-struct-short.rep 

mdriver-dbg: mm.c:331: void write_block(block_t *, size_t, _Bool): Assertion 
`(unsigned long)footerp < ((long)block + size)' failed.

Aborted (core dumped)

⬛ Contract failed on line 331,  which gives us a better idea of the 
source of the issue

⬛ Open mm.c and try to find what is causing the contract to fail
⬛ Writing effective contracts can save a lot of debugging time!
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Tips for using our tools

⬛ Run mdriver with the –D option to detect garbled bytes as 
early as possible. Run it with –V to find out which trace 
caused the error.

⬛ Note that sometimes, you get the error within the first 
few allocations. If so, you could set a breakpoint for 
mm_malloc / mm_free and step through every line.

⬛ Print out local variables and convince yourself that they 
have the right values.

⬛ For mdriver-emulate, you can still read memory from the 
simulated 64-bit address space using 
mem_read(address, 8) instead of x /gx.
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Style

⬛ Well organized code is easier to debug and easier to grade!
▪ Modularity: Helper functions to respect the list interface.

▪ Documentation:

▪ File Header: Describes all implementation details, including block 
structures.

▪ Code Structure:

▪ Minimal-to-no pointer arithmetic.

▪ Loops instead of conditionals, where appropriate.

▪ Use git!

▪ Make sure you commit and push often and write descriptive 
commit messages
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MallocLab
⬛ Due next Tuesday

⬛ 7% of final grade (+ 4% for checkpoint)
▪ Style matters! Don’t let all of your hard work get wasted.

▪ There are many different implementations and TAs will need to 
know the details behind your implementation.

⬛ Read the writeup. It even has a list of tips on how to 
improve memory utilization.

⬛ Read the malloc roadmap posted on Piazza

⬛ Rubber duck method
▪ If you explain to a rubber duck what your function does 

step-by-step, while occasionally stopping to explain why you need 
each of those steps, you’d may very well find the bug in the middle 
of your explanation.

▪ Remember the “debug thought process” slide from last recitation?


