
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation
Malloc Part II

Your TAs
Monday, October 31st, 2022

■ Malloc Lab Checkpoint is due TOMORROW at 11:59 pm

■ Malloc Lab Final is due Nov 8th at 11:59 pm

■ 7% of final grade (+4% for checkpoint)

■ Style matters! Don’t let all of your hard work get wasted.

■ There are many different implementations and TAs will need to

know the details behind your implementation.

■ Code Review Signups for Checkpoint Due Thursday by 11:59

PM

■ Malloc (Final) bootcamp was yesterday - look at recording!

Logistics

Agenda

■ Logistics

■ Malloc Lab

■ Checkpoint review

■ Activity 1

■ Appendix

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Your Code

⬛ Sketch out the heap

⬛ Add Instrumentation

⬛ Use tools

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

⬛ Start with a heap, in this case implicit list

⬛ Now try something, in this case, extend_heap
 block_t *block = payload_to_header(bp);
 write_block(block, size, false);
 // Create new epilogue header
 block_t *block_next = find_next(block);
 write_epilogue(block_next);

4 4 4 4 6 46 40 00

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

⬛ Here is a free block based on lectures 19 and 20
▪ Explicit pointers (will be well-defined see writeup and Piazza)

▪ This applies to ALL new fields you want inside your struct

▪ Optional boundary tags

⬛ If you make changes to your design beyond this
▪ Draw it out.

▪ If you have bugs, pictures can help the staff help you

▪ Put a picture of your data structure into your file header
(optional, but we will be impressed)

Size

Unallocated

b
0

Size
b
0

1 word

Free
Block

Next

Prev

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: ??

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

⬛ Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: ??

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common Problems

⬛ Throughput is very low
▪ Which operation is likely the most throughput intensive?

▪ Hint: It uses loops!

▪ Solution: Instrument your code!

⬛ Utilization is very low / Out of Memory
▪ Which operation can cause you to allocate more memory than you

may need?

▪ Hint: It extends the amount of memory that you have!

▪ Solution: Instrument your code!

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

⬛ Remember that measurements inform insights.
▪ Add temporary code to understand aspects of malloc

▪ Code can violate style rules or 128 byte limits, because it is
temporary

⬛ Particularly important to develop insights into
performance before making changes

▪ What is expensive throughput-wise?

▪ How much might a change benefit utilization?

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation example

⬛ Searching in find_fit is often the slowest step

⬛ How efficient is your code? How might you know?
▪ Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)
{
 block_t *block;
 for (block = heap_listp; get_size(block) > 0;
 block = find_next(block))
 {
 if (!(get_alloc(block)) && (asize <= get_size(block)))
 {
 return block;
 }
 }
 return NULL; // no fit found
}

call_count++;

block_count++;

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation cont.

⬛ What size of requests?
▪ How many 8 bytes or less?

▪ How many 16 bytes or less?

▪ What other sizes?

⬛ What else could you measure? Why?

⬛ Remember that although the system’s performance varies
▪ The mdriver’s traces are deterministic

▪ Measured results should not change between runs

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use tools

⬛ Use mm_checkheap()
▪ Write it if you haven’t done so already

▪ Add new invariants when you add new features

▪ Know how to use the heap checker.

▪ Why do you need a heap checker? 2 reasons.

⬛ Use gdb
▪ You can call print or mm_checkheap whenever you want in gdb. No

need to add a whole lot of printf’s.

▪ Offers useful information whenever you crash, like backtrace.

▪ Write helper functions to print out free lists that are ONLY called
from GDB

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Write your own traces!

⬛ Write short traces that test simple sequences of malloc
and free

⬛ Read the README file in the traces directory and the
writeup from the traces assignment to see how trace files
need to be written

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mdriver-emulate

⬛ Testing for 64-bit address space

⬛ Use correctly sized masks, constants, and other variables

⬛ Be careful about subtraction between size types (may
result in underflow/overflow)

▪ Note: there are many other issues besides this.

⬛ Reinitialize your pointers in mm_init

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes

⬛ Malloc library returns a block
▪ mdriver writes bytes into payload (using memcpy)

▪ mdriver will check that those bytes are still present

▪ If malloc library has overwritten any bytes, then report garbled bytes

▪ Also checks for other kinds of bugs

⬛ Now what?

⬛ The mm_checkheap call is catching it right?

⬛ If not, we want to find the garbled address and watch it

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes GDB and Contracts

⬛ Get out a laptop

⬛ Login to shark machine

⬛ wget http://www.cs.cmu.edu/~213/activities/rec9.tar

⬛ tar -xvf rec9.tar

⬛ cd rec9

⬛ mm.c is a fake implicit list implementation.
▪ Source code is based on mm.c starter code

http://www.cs.cmu.edu/~213/activities/rec9.tar

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB and Contracts Exercise

⬛ First, let us run without contracts and gdb
⬛ ./mdriver -c ./traces/syn-struct-short.rep

(example output)

ERROR [trace ./traces/syn-struct-short.rep, line 16]: block 1
(at 0x8000000a0) has 8 garbled bytes, starting at byte 16
ERROR [trace ./traces/syn-struct-short.rep, line 21]: block 4
(at 0x800000180) has 8 garbled bytes, starting at byte 16

correctness check finished, by running tracefile
"traces/syn-struct-short.rep".
 => incorrect.

Terminated with 2 errors

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using watchpoints in GDB

⬛ gdb --args ./mdriver-dbg1 -c ./traces/syn-struct-short.rep
⬛ What is the first address that was garbled?

▪ Use gdb watch to find out when / what garbled it.

(gdb) watch *0x8000000a0
(gdb) run

// Keep continuing through the breaks:

// write_block()

// 4 x memcpy

Hardware watchpoint 1: *0x8000000a0

Old value = 129
New value = 32
write_block() at mm.c:333

⬛ Tells us to take a closer look at write_block()

We just broke in
after overwriting

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contracts Exercise cont.

⬛ Now let us see what happens, when we use the file with
contracts

⬛ ./mdriver-dbg2 -c ./traces/syn-struct-short.rep

mdriver-dbg: mm.c:331: void write_block(block_t *, size_t, _Bool): Assertion
`(unsigned long)footerp < ((long)block + size)' failed.

Aborted (core dumped)

⬛ Contract failed on line 331, which gives us a better idea of the
source of the issue

⬛ Open mm.c and try to find what is causing the contract to fail
⬛ Writing effective contracts can save a lot of debugging time!

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tips for using our tools

⬛ Run mdriver with the –D option to detect garbled bytes as
early as possible. Run it with –V to find out which trace
caused the error.

⬛ Note that sometimes, you get the error within the first
few allocations. If so, you could set a breakpoint for
mm_malloc / mm_free and step through every line.

⬛ Print out local variables and convince yourself that they
have the right values.

⬛ For mdriver-emulate, you can still read memory from the
simulated 64-bit address space using
mem_read(address, 8) instead of x /gx.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style

⬛ Well organized code is easier to debug and easier to grade!
▪ Modularity: Helper functions to respect the list interface.

▪ Documentation:

▪ File Header: Describes all implementation details, including block
structures.

▪ Code Structure:

▪ Minimal-to-no pointer arithmetic.

▪ Loops instead of conditionals, where appropriate.

▪ Use git!

▪ Make sure you commit and push often and write descriptive
commit messages

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab
⬛ Due next Tuesday

⬛ 7% of final grade (+ 4% for checkpoint)
▪ Style matters! Don’t let all of your hard work get wasted.

▪ There are many different implementations and TAs will need to
know the details behind your implementation.

⬛ Read the writeup. It even has a list of tips on how to
improve memory utilization.

⬛ Read the malloc roadmap posted on Piazza

⬛ Rubber duck method
▪ If you explain to a rubber duck what your function does

step-by-step, while occasionally stopping to explain why you need
each of those steps, you’d may very well find the bug in the middle
of your explanation.

▪ Remember the “debug thought process” slide from last recitation?

