Compiling Fundamentals

15-213/15-513/14-513: Introduction to Computer Systems

Questions that will be answered today

What does it mean to compile code?
What does compiling code look like?
How can code be compiled?

What are Makefiles?

Why is this important?

e ltisimportant tounderstand how programs are compiled to have a better understanding of
how different parts of a computer interact with each other.
e Fundamental aspect of how computers run code.

#include <stdio.h>
int main() {
int i, n =10, t1 =0, t2 = 1, nxt;

Levels of Abstraction

C programmer

for (1

1;

printf("%d, ",
nxt = t1 + t2;
t2;

t1

i <=n; ++i){

t2 ; nxt; }
retarn 0; }
e C[and other high level languages]
are easy for programmers to
understand, but computers Assembly programmer
require lots of software to process = T
them . Addresses
e Machine code is just the opposite: R , D f):t
easy for the computer to process, Condition) | Instructions Stack
humans need lots of help to

understand it

e Assemblylanguageisa
compromise between the two:
readable by humans (barely), close
correspondence to machine code

Computer designer

Q._

D

Q-

Gates, clocks, circuit layout, ...

A -0
i) o
o

Source Code (.c, .cpp, .h) file

Pre-Processor

What does it mean to compile code? — e

e The computer only understands I > .

machine code directly l
e All other languages must be either Assembly Code (.5)
o interpreted: executed by software - .
o compiled: translated to machine m

code by software Machine Code (., .obj)

Executable Machine
Code (.exe)

Source Code (.c, .cpp, .h) file

Pre-Processor

What does it mean to compile code? — e

e Computer follows steps to translate your | > .

code into something the computer can 1

understand esembles Assembly Code (.s)
e Thisis the process of compiling code [a

compiler completes these actions] m - .

e Four steps for C: preprocessing, compiling,
assembling, linking
o Most other compiled languages don'’t
have the preprocessing step, but do
have the other three

Machine Code (.0, .obj)

Executable Machine
Code (.exe)

Stepping through the stages

Pre-Processor

o $gcc-E[flags] [filenames]
Compiler

o $gcc-S[flags] [filenames]
Assembler

o $gcc-c[flags] [filenames]

o $objdump -d[filenames]
Linker

o $gcc-oexename] [flags] [filenames]

Source Code (.c, .cpp, .h) file

Include Header, Expand

Macro (.i, .ii)

Ascembler Assembly Code (.s)

w
Machine Code (.o, .obj)

Executable Machine
Code (.exe)

C Code to Machine Code

Pre-Processor

Peculiar to the C family; other languages
don't have this
Processes #include, #define, #if, macros
o Combines main source file with
headers (textually)
o Defines and expands macros
(token-based shorthand)
o Conditionally removes parts of the
code (e.g. specialize for Linux, Mac, ...)
Removes all comments
Output looks like C still

Source Code (.c, .cpp, .h) file

Pre-Processor

Include Header, Expand
Macro (.i, .ii)

Before and after preprocessing

#include <limits.h> # 1 "test.c"
#include <stdio.h> # 1 "/usr/lib/gcc/x86_64-1linux-gnu/10/include/limits.h" 1 3 4
1 "/usr/include/stdio.h™ 1 3 4

int main(void
() { extern int fprintf (FILE *_ restrict __ stream,

// Report the range of “char” on this system const char *__restrict _ format, ...);
printf("CHAR_MIN = %d\n" extern int printf (const char *__restrict _ format, ...);
CHAR_MAX = %d\n", # 874 "/usr/include/stdio.h" 3 4
CHAR_MIN, CHAR_MAX); # 3 "test.c" 2
return 0;
int main(void) {
} printf("CHAR_MIN = %d\n"
"CHAR_MAX = %d\n",
° Contents of header files inserted inline # 6 "test.c" 3 4
(-ox7f - 1)
° Comments removed 46 "test.c"
° Macros expanded , OX7F);
e “Directive” lines (beginning with #) , return @;
communicate things like original line numbers

Source Code (.c, .cpp, .h) file

Compiler

The compiler translates the preprocessed Include Header, Expand
code into assembly code Macro (.i, .ii)

o This changes the format and structure
of the code but preserves the
semantics (what it does)

o Canchange lots of details for
optimization, as long as the overall
effect is the same l

W Assembly Code (.s)

| -
Libraries ,

Before and after compilation

extern int printf (const char *__restrict -file "test.c”
format) . .section .rodata.strl.1,"aMS",@progbits,1
— >)
int main(void) { -Lee:
K . N .string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
printf("CHAR_MIN = %d\n text
"CHAR_MAX = %d\n", .globl main
(-ox7f - 1), ox7f); main:
return 0; subq $8, %rsp
} movl $127, %edx
movl $-128, %esi
leaq .LCo(%rip), %rdi
xorl %»eax, %eax
C source code converted to assembly language call printf@PLT
Textual, but 1:1 correspondence to machine xorl %eax, %eax
language addq $8, %rsp
String out-of-line, referred to by label (. LCO) ret . .
i .size main, .-main
printf just referred to, not declared

Include Header, Expand

l Macro (.i, .ii)

Assembler

e Parses assembly code and mainly

translates into bits l
o Thereis some flexibility to
generate the most efficient
version of machine code

| Lbreres T

Assembly Code (.s)

Assembler

W Machine Code (.0, .obj)

Before and after assembling

.file "test.c"
.section .rodata.strl.1,"aMS",@progbits,1
.LCO:
.string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
.text
.globl main
main:
subq $8, %rsp
movl $127, %edx
movl $-128, %esi
leaq .LCO(%rip), %rdi
xorl %eax, %eax
call printf@PLT
xorl %eax, %eax
addq $8, %rsp
ret
.size main, .-main
° Everything is now binary
° “Relocations” for addresses not yet known

$ objdump -s -r test.o
test.o: file format elf64-x86-64

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

0000000000000011 R_X86_64_PC32 .LCO-0x0000000000000004
0000000000000018 R_X86_64_PLT32 printf-0x0000000000000004

Contents of section .rodata.strl.1:

0000 43484152 5f4d494e 203d2025 64024348 CHAR_MIN = %d.CH
0010 41525f4d 4158203d 2025640a 00 AR_MAX = %d..
Contents of section .text:

0000 4883ecO8 ba7fo000 00be80ff ffff488d H............. H.
0010 30000000 0031cPe8 00000 31c04883 =....1...... 1.H.

0020 c408c3

Before and after assembling

.file "test.c"
.section .rodata.strl.1,"aMS",@progbits,1
.LCO:
.string "CHAR_MIN = %d\nCHAR_MAX = %d\n"
.text
.globl main
main:
subq $8, %rsp
movl $127, %edx
movl $-128, %esi
leaq .LCO(%rip), %rdi
xorl %eax, %eax
call printf@PLT
xorl %eax, %eax
addq $8, %rsp
ret
.size main, .-main
° Just to emphasize that 1:1 correspondence

between assembly and machine instructions

$ objdump -d -r test.o

test.o:

file format elf64-x86-64

Disassembly of section .text.startup:

000000000000V <main>:

0:
4:
9:
e:
15:
17:
lc:

le:
22:

48
ba
be
48

31
e8

31
48
c3

83 ec 08 sub $0x8,%rsp
7f 00 00 00 mov $0x7f,%edx
80 ff ff ff mov $oxffffff80,%esi
8d 3d 00 @0 00 00 lea @x0(%rip),%rdi
11: R_X86_64_PC32 .LCO-0x4
co xor %eax, keax
00 00 00 00 call 1c <main+@x1c>
18: R_X86_64_PLT32 printf-0x4
co xor %eax, keax
83 c4 08 add $0x8,%rsp
ret

Static Library
Files (.lib, .a) |

| Lbrares -
e Aggregates multiple independently
compiled files containing machine code

e Fillsinthose unknown addresses
e Thegoalistocreate 1 file with all of the

needed code to run the program

o Thisisthe file you run to check your
code!

Linker J Assembly Code (.s)

Machine Code (.0, .obj)

Executable Machine
Code (.exe)

How to Use The Compiler (gcc)

GCC -Whatisit?

e GNU Compiler Collection

o GCCisaset of compilers for various languages. It provides all of the infrastructure for

building software in those languages from source code to assembly.

The compiler can handle compiling everything on its own, but you can use various flags to
breakdown the compilation steps

e Example:

gcc [flags] [infile(s)]

Common GCC Flags

-0 [EXECUTABLE NAME] : names executable file
-0x : Code optimization

-00 : Compile as fast as possible, don’'t optimize [this is the default]

-01, -02, -03: Optimize for reduced execution time [higher numbers are more optimized]

-0s : Optimize for code size instead of execution time.

-0g : Optimize for execution time, but try to avoid making interactive debugging harder.
-g : produce “debug info”: annotate assembly so gdb can find variables and source code
-Wall:enable many “warning” messages that should be on by default, but aren’t

- Does not turn on all of the warning messages GCC can produce.

- See https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html for many more
-Werror :turns all warnings into errors
-std=c99 : use the 1999 version of the C standard and disable some (not all!) extensions

https://gcc.gnu.org/onlinedocs/gcc-4.8.0/gcc/Warning-Options.html

VEUGHIES

What is a makefile?

e Automates the process of creating files (using a compiler)
e For example, create bomb from bomb. c,phases.c,andutil.c
e Running make bomb will update bomb

o Only if any of the source files have changed;

avoids unnecessary work

o Remembers complicated compiler commands for you
e Canalsostore recipes for automating development tasks

o make format toreformat source files

Makefile

Makefiles are lists of rules

e There are two kinds of rules: normal and phony
o Normalrules create files
o Phony rules don’t directly create files
e Eachrule has atarget.
o For normal rules, the target is the name of the file that the rule will create
o For phony rules, the target is an arbitrary name for what the rule does
e Rules may have prerequisites (also known as dependencies)
o Prerequisites are the files that are needed to create the target
o If any of the prerequisites doesn’t exist, it must be created first
o Ifany of the prerequisites is newer than the target, the target is “out of date” and must be re-created
e Rules may have commands.

o Oneor more shell commands that create the target from its prerequisites
o For phony rules, just some commands to be run

Normal rule example

bomb: bomb.o phases.o util.o
$(CC) -o bomb bomb.o phases.o util.o

Normal rule example

If this file

doesn’t exist... ...orifitis older than any of these files...

bomb: bomb.o phases.o util.o
$(CC) -o bomb bomb.o phases.o util.o

N

... then run this command.

Normal rule example

If this file
doesn’t exist...

|

bomb: bomb.o phases.o util.o
$(CC)| -o bomb bomb.o phases.o util.o

/ N

This refers to the value of a ... then run this command.
variable,named CC, that holds
the name of a C compiler.

...orifitis older than any of these files...

Normal rule without prerequisites

output dir:
mkdir output dir

e Run mkdir output_dir if output_dir does not exist
e Ifitdoes exist, no action

Normal rule without commands

bomb.o: bomb.c support.h phases.h

e Re-create bomb.o if any of bomb.c, support.h, phases.h is newer
e The commands to do this are given somewhere else

o Apattern rule elsewhere in the Makefile

o Animplicit rule built into Make

Pattern and implicit rules

%.0: %.C

$(CC) $(CFLAGS) -c -0 $@ $<

e Tocreate an.ofilefrom a.cfile with the same base name, use this command
e Special variables $@ and $< give the name of the .0 and .c files respectively
e Variables CC and CFLAGS can be set to customize behavior

e Thisruleisimplicit — built into Make — you don'’t have to write it yourself

Phony rule example

all: bomb bomb-solve
.PHONY: all

e When asked to create “all”, create bomb and bomb-solve
e Does not create a file named “all”
e The .PHONY annotation can be anywhere in the makefile

Phony rule example 2

clean:
rm -+ bomb bomb-solve *.0
.PHONY: clean

e When asked to create “clean”, run this command
o Which deletes bomb, bomb-solve, and all object files
e Does not create a file named “clean”

The make command

e Runningmake in the shell will cause the shell to look for a Makefile in the current
directory. If it finds one, it will attempt to create the first target listed in the Makefile.
e Youcanalsorunmake <target name> toindicate exactly which target you want to

create.
e By convention, the first target is a phony target named all
o so make and make all dothesame thing
o asthe nameimplies, this is to create everything that the makefile knows how to create
e Phony rules serve as entry points into the Makefile
o make all createseverything,make clean deletesall generated files, make check runs

tests, ...
o Butyoucanalsomake bomb.o if that’s the only thing you want

A complete Makefile

CC = gcc
CFLAGS = -std=c99 -g -02 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
$(CC) $(LDFLAGS) -o $@ $~ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -o $@ $~ $(LIBS)

bomb.o: bomb.c phases.h support.h
phases.o: phases.c phases.h support.h

phases-solve.o: phases-solve.c phases.h support.h

util.o: util.c support.h

clean:
rm -f bomb bomb-solve *.o

.PHONY: all clean

OK to use undefined variables
o LDFLAGS,LIBS
o Found in environment or treated as empty

Don’t need to give commands to create object

files from C source

o Butdoneed to list header file dependencies
for each object file

Do need to give commands to create
executables (missing feature)

all rule at the top, clean rule at the bottom
One .PHONY annotation for all phony rules

Rules form a graph

CC = gcc
CFLAGS = -std=c99 -g -02 -Wall -Werror

all: bomb bomb-solve
bomb: bomb.o phases.o util.o
$(CC) $(LDFLAGS) -0 $@ $~ $(LIBS)

bomb-solve: bomb.o phases-solve.o util.o
$(CC) $(LDFLAGS) -0 $@ $~ $(LIBS)

bomb.o: bomb.c phases.h support.h

phases.o: phases.c phases.h support.h
phases-solve.o: phases-solve.c phases.h support.h
util.o: util.c support.h

clean:
rm -f bomb bomb-solve *.o

.PHONY: all clean

all

bomb | | bomb-solve |
| bomb.o | |[phases.o| |phases-solve.o| |util.o|
A A A A
| bomb.c | |phases.c| |phases-solve.c| [util.c]|

e Make avoids unnecessary work
o If bomb.c changes, make all will
re-create bomb.o, bomb, bomb-solve
o Ifphases.c changes, make all will
only re-create phases.o and bomb

Make can see through missing

targets
o Ifbomb.odoes not exist,make bomb
creates it from bomb. c

Practice!

https://www.cs.cmu.edu/~213/bootcamps/lab3_handout.pdf
https://www.cs.cmu.edu/~213/bootcamps/lab3_handout.pdf

Feedback:

https://tinyurl.com/213bootcamp2
https://tinyurl.com/213bootcamp2

Appendix

Linking Files

Why are we learning about linking files?

e Linkerisacomputer system program l l

that object files (generated by a Translators Translators
compiler or an assembler) and (cpp, ccl, as) (cpp, ccl, as)
combines them into a single executable l
file, library file, or another object file. HaLh 6 o, S Separately compiled
Programs are translated and linked relocatable object files
using a compiler driver: l l

o linux> gcc -Og -o prog main.c sum.c H

o linux> ./prog Llnker (ld)
More in future lecture! l ' .

Fully linked executable object file

PEOg (contains code and data for all functions
defined inmain.c and sum.c)

What does a linker do?

e Symbol resolution
o Programs define and reference symbols (global variables and functions)
o Linker associates each symbol reference with exactly 1 symbol definition
e Relocation
o Merges separate code and data sections into single sections
o Relocates symbols from relative locations in .o files to final memory locations
o Updates all references to symbols to reflect new positions

Linker symbols

e Global symbols
o Symbols defined by module m that can be referenced by other modules.
m e.g., non-static C functions and non-static global variables.
e External symbols
o Global symbols that are referenced by module m but defined by some other module.
e Local symbols
o Symbols that are defined and referenced exclusively by module m.
m e.g., Cfunctions and global variables defined with the static attribute.
o Local linker symbols are not local program variables

Symbols

Definitions

il ™

int sum(int *a,

return val;

{

inﬂiééé})nt *a, int n)

int i, 8 = 0;

for (1 = 0; 1 < n;
s += al[il;

}

return s;

i++) {

sum.cC

Reference

Why do you need linkers?

e Modularity
o Program can be written as a collection of smaller source files, rather than one
monolithic mass.
e Efficiency
o Time: Separate compilation
m Change one source file, compile, and then relink. No need to recompile other
source files.
o Space: Libraries
m Common functions can be aggregated into a single file...

Static vs Dynamic Linking

e Static Linking
o Executable files and running memory images contain only the library code they
actually use
e Dynamiclinking
o Executable files contain no library code
o During execution, single copy of library code can be shared across all executing
processes

Types of object files

e Relocatable object file (.o file)
o Code and data that can be combined with other relocatable object files to form executable
object file
m Each.ofileis produced from exactly one source (.c) file
e Executable object file (a.out file)
o Code and data that can be copied directly into memory and then executed
e Shared object file (.so file)
o Special type of relocatable object file that can be loaded into memory and linked
dynamically, at either load time or run-time

How Linker resolves duplicate symbol definitions

e Program symbols are either strong or weak
o Strong: procedures and initialized globals
o Weak: uninitialized globals
m Orone'sdeclared with specifier extern

pl.c p2.c
strong —| int foo=5; int foo; |+— weak
strong ——|P1() { P2() { +«— strong
} }

Symbol rules

1. Multiple strong symbols are not allowed
o Eachitem can be defined only once
2. Given astrong symbol and multiple weak symbols, choose the strong
symbol
o References to the weak symbol resolve to the strong symbol
3. Ifthere are multiple weak symbols, pick an arbitrary one

LD_LIBRARY_PATH

e Ifyouareusingdynamic libraries, you need to tell the compiler where to look for the
library!
e [tiseasiesttouse dynamic libraries with makefiles, just include this line:

LD_LIBRARY_PATH = “~/my/path”
e |fyouareinterested increating a dynamic library, follow the steps here:

o Shared Libraries: https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
o Dynamic Libraries: https://tldp.org/HOWTO/Program-Library-HOWTO/dI-libraries.html

https://tldp.org/HOWTO/Program-Library-HOWTO/shared-libraries.html
https://tldp.org/HOWTO/Program-Library-HOWTO/dl-libraries.html

Resources

https://missing.csail.mit.edu/2020/metaprogramming/
https://www.cs.cmu.edu/~15131/f17/topics/makefiles/
https://www.gnu.org/software/make/manual/html node/Phony-Targets.html
https://makefiletutorial.com/
https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html
https://gcc.gnu.org/onlinedocs/gcc/
https://daveparillo.github.io/cisc187-reader/build-tools/make.html

https://missing.csail.mit.edu/2020/metaprogramming/
https://www.cs.cmu.edu/~15131/f17/topics/makefiles/
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://makefiletutorial.com/
https://www.oreilly.com/library/view/programming-embedded-systems/0596009836/ch04.html
https://gcc.gnu.org/onlinedocs/gcc/
https://daveparillo.github.io/cisc187-reader/build-tools/make.html

