
Carnegie Mellon

Malloc Bootcamp

Adittyo, Nidhi, Tiffany

March 19, 2023

Carnegie Mellon

Agenda

▪ Reminders about structs/unions
▪ Modularity and Design
▪ Increasing Utilization

▪ Eliminating footers
▪ Decreasing minimum block size
▪ Other improvements

▪ Asking for Help
▪ Appendix

Carnegie Mellon

Conceptual Outline

Carnegie Mellon

Anonymous Structs/Unions

● What is the type of x?
● How do we access x of my_a?
● What is the type of my_b?
● How do we access y of my_a?

int
my_a.x
struct B

my_a.my_b.y my_a.y

struct A {
int x;
struct B {

int y;
float z;

} my_b;
} my_a;

struct A {
int x;
struct {

int y;
float z;

};
} my_a;

struct
name

member
name

Same idea with unions.
For the difference
between unions and
structs, refer to the C
bootcamp slides.

4

Carnegie Mellon

Zero-Length Arrays
struct line {

int length;
char contents[0];

};

int main() {
struct line my_line;
printf(“sizeof(contents) = %zu\n”, sizeof(L.contents)); // 0
printf(“sizeof(struct line) = %zu\n”, sizeof(struct line)); // 4

}

6

● It’s a GCC extension - not part of the C specification!
● Must be at the end of a struct

○ Can be a member of a union that’s at the end of a struct
● sizeof on a zero-length array returns zero
● But, at runtime, the zero-length array expands to fill any space after the struct

○ struct line *l = malloc(sizeof(struct line) + 23);

○ Can use l->contents[0] through l->contents[22]

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html#Zero-Length

Carnegie Mellon

7

Time Management
● Labs in this course are NOT meant to be done in one sitting

○ If one of the TAs or faculty sat down to redo this lab from scratch,
it would still take them at least a week

● Plan ahead, leave plenty of time for design
○ Measure twice, cut once

● Work in small chunks of time
○ One or two hours, then take a break
○ Your brain can keep working subconsciously
○ Leave time for “aha!” moments

Carnegie Mellon

8

Modularity and Design
● Good style shouldn’t be an afterthought

○ If you can read your own code it’s easier to debug
○ It will make it easier to explain to students when you become a TA later :)

● Suggestions:
○ Avoid long if-else chains (could you be using a loop?)
○ Think carefully about how much work each function should do
○ Use structs and unions to minimize pointer arithmetic
○ Dedicate a few helper functions to capture all of the pointer arithmetic

● Descriptive file header comment explaining your block structure

● Descriptive function header comments

● Comment as you go!
○ Not just for style points, you’ll get confused too

Quick Example of Good and Bad Style

static const size_t
bucket_sizes[N_BUCKETS] = {
 // (some numbers)
};

static size_t
get_bucket_size(int bucket) {
 for (int i = 0; i < N_BUCKETS; i++) {
 if (i == bucket) {
 return bucket_sizes[i];
 }
 }
 return 0;
}

Quick Example of Good and Bad Style

static const size_t
bucket_sizes[N_BUCKETS] = {
 // (some numbers)
};

static size_t
get_bucket_size(int bucket) {
 for (int i = 0; i < N_BUCKETS; i++) {
 if (i == bucket) {
 return bucket_sizes[i];
 }
 }
 return 0;
}

static const size_t
bucket_sizes[N_BUCKETS] = {
 // (some numbers)
};

static size_t
get_bucket_size(int bucket) {
 assert(bucket >= 0 && bucket < N_BUCKETS);
 return bucket_sizes[bucket];
}

Quick Example of Good and Bad Style

/**
 * Array of bucket sizes.
 */
static const size_t
bucket_sizes[N_BUCKETS] = {
 // (some numbers)
};

/**
 * “Bucket” sizes for free lists.
 * Free list `i` holds free blocks whose
 * allocated size is <= `bucket_size[i]`
 * but >= `bucket_size[i-1]`.
 * (Notionally, `bucket_size[-1]` is zero.)
 */
static const size_t
bucket_sizes[N_BUCKETS] = {
 // (some numbers)
};

Carnegie Mellon

Eliminate footers in allocated blocks
Reduces internal fragmentation (increases utilization)

● Why do we need footers?
○ Coalescing blocks
○ What kind of blocks do we coalesce?

● Do we need to know the size of a block if we’re not
going to coalesce it?

● Based on that idea, can you design a method that
helps you determine when to coalesce?
○ Hint: where could you store a little bit of extra

information for each block?

m1 0

next
prev

m1 0

m2 1

payload

m3 1

payload

free
blocks
still have
footers

allocated
blocks
don’t
have
footers!

12

Carnegie Mellon

Coalescing Memory
■ Combine adjacent blocks if both are free

■ footerless: if free, obtain info from footer then use next/prev

Allocated

Allocated

■ Four cases:

block to
be freed

Allocated

Free

Free

Allocated

Free

Free

13

Carnegie Mellon

42

Finding a Free Block
■ First Fit

■ search from beginning, use first block that's big enough
■ linear time in total number of blocks
■ can cause small “splinters” at beginning of list

■ Next Fit
■ start search from where previous search finished
■ often faster than first fit, but some research suggests worse

fragmentation
■ Best Fit

■ search entire list, use smallest block that's big enough
■ keeps fragments small (less wasted memory), but slower than first fit

■ Better Fit
■ First fit, then bounded best fit
■ Bounded best fit, then first fit

Carnegie Mellon

Decrease the minimum block size
● Reduces internal fragmentation (increase

utilization)
● Currently, min block size is 32.

○ 8 byte header
○ 16 byte payload (or 2 8 byte pointers for free)
○ 8 byte footer

● If you just need to malloc(5), and the payload size
is 16 bytes, you waste 11 bytes.

● Must manage free blocks that are too small to hold
the pointers for a doubly linked free list

A lot of bytes are wasted!
How can we prevent this?

15

Decrease the minimum block size
HINT: Your minimum block size should be 16 in order to pass final,

meaning you only keep 2 of the fields that we had before.
We need to pick one field to remove

● Remove Prev field
● Remove Next field
● Remove Header
● Compress Header

Small utilization improvements
● Insertion Policy

○ LIFO (last-in-first-out) vs FIFO (first-in-first-out)
● Segregated List Buckets

○ Potentially reconsider size classes (only 128 bytes for global
variables)
■ Diminishing returns
■ Adjust buckets based trace files (please don’t hard code)

● Chunksize
○ Potentially reconsider smaller size

● Fit Algorithm
○ First-fit
○ Best-fit (which segregated list approximates)
○ Better Fit (ex. search for the next 20 blocks after finding a fit)

Carnegie Mellon

18

How to Ask for Help
● Be specific about what the problem is, and how to cause it

○ BAD: “My program segfaults.”
○ GOOD: “I ran mdriver in gdb and it says that a segfault occurred due to

an invalid next pointer, so I set a watchpoint on the segfaulting next
pointer. How can I figure out what happened?”

○ GOOD: “My heap checker indicates that my segregated list has a block
of the wrong size in it after performing a coalesce(). Why might that be
the case?”

○ What sequence of events do you expect around the time of
the error? What part of the sequence has already happened?

● Have you written your mm_checkheap function, and is it working?
○ We WILL ask to see it!

● Use a rubber duck!

Ways to Improve

source: writeup

Carnegie Mellon

20

If You Get Stuck

■ Please read the writeup!
■ CS:APP Chapter 9
■ View lecture notes and course FAQ at

http://www.cs.cmu.edu/~213
■ Post a private question on Piazza

http://www.cs.cmu.edu/~213

Carnegie Mellon

21

APPENDIX

Carnegie Mellon

2
2

Dynamic Memory Allocation

■ Used when
■ we don't know at compile-time how much memory we will need
■ when a particular chunk of memory is not needed for the entire run

■ lets us reuse that memory for storing other things
■ Important terms:

■ malloc/calloc/realloc/free
■ mem_sbrk
■ payload
■ fragmentation (external vs internal)
■ Splitting / coalescing

Carnegie Mellon

mm_init
▪ Why prologue footer and

epilogue header?

▪ Payload must be 16-byte
aligned

▪ But, the size of payload doesn’t
have to be a multiple of 16 - just
the block does!

▪ Things malloc’d must be within
the prologue and epilogue

Prologue footer
n + 8

Epilogue header

n

Prologue footer
Size = chunk size

rounded up
0

prev

Size = chunk size

rounded up
0

Epilogue header

n

n + 8

n + 16

2
3

Carnegie Mellon

6

If We Can't Find a Usable Free Block
■ Assume an implicit list implementation
■ Need to extend the heap

■ mem_sbrk()
■ sbrk(num_bytes) allocates space and

returns pointer to start
■ sbrk(0) returns a pointer to the end of

the current heap
■ For speed, extend the heap by a little

more than you need immediately
■ use what you need out of the new

space, add the rest as a free block
■ What are some tradeoffs you can

make?

stack

heap

uninitialized data
initialized data
program code

current brk
pointer

0

Carnegie Mellon

25

Tracking Blocks: Explicit List
▪ Maintain a list of free blocks instead of all blocks

▪ means we need to store forward/backward pointers, not just sizes
▪ we only track free blocks, so we can store the pointers in the payload area!
▪ need to store size at end of block too, for coalescing

allocated block free block
size 1

payload and
padding

size 1

size 0
next
prev

unused

size 0

Carnegie Mellon

Splitting a Block
■ If the block we find is larger than

we need, split it and leave the
remainder for a future allocation

■ explicit lists: correct previous and
next pointers

■ Segregated lists: same as
explicit

■ When would we not split a
block?

m 1

payload

m 1

n-m 0

next
prev

n-m 0

26

n 0

next
prev

n 0

Carnegie Mellon

Coalescing Memory
■ Combine adjacent blocks if both are free

■ explicit lists: look forward and backward in the heap, using block
sizes, not next/prev

Allocated

Allocated

■ Four cases:

block to
be freed

Allocated

Free

Free

Allocated

Free

Free
27

Carnegie Mellon

Coalescing Memory
m1 0

next
prev

m1 0

n 1

n 1

m2 0

next
prev

m2 0
28

m1 0

next
prev

m1 0

n 1

n 1

m2 1

payload

m2 1

n+m1 0

next
prev

n+m1 0

m2 1

payload

m2 1

n+m1+m2 0

next
prev

n+m1+m2 0

Carnegie Mellon

14

Design Considerations
■ Finding a matching free block

■ First fit vs. next fit vs. best fit vs. “good enough” fit
■ continue searching for a closer fit after finding a big-enough free

block?
■ Free block ordering

■ LIFO, FIFO, or address-ordered?
■ When to coalesce

■ while freeing a block or while searching for free memory?
■ How much memory to request with sbrk()

■ larger requests save time in system calls but increase maximum
memory use

Carnegie Mellon

30

Hints on hints
For the final, you must greatly increase the utilization and keep
a high throughput.

● Reducing external fragmentation requires achieving something closer
to best-fit allocated
○ Using a better fit algorithm
○ Combine with a better data structure that lets you run more

complex algorithms

● Reducing internal fragmentation requires reducing data structure
overhead and using a ‘good’ free block

Carnegie Mellon

31

Segregated Lists
• Multiple explicit lists where the free blocks are of a certain size range

• Increases throughput and raises probability of choosing a
better-sized block

• Need to decide what size classes (only 128 bytes of stack space)
○ Diminishing returns
○ What do you do if you can’t find something in the current size class?

• RootSizeClass1 -> free-block 1 -> free-block 2 -> free-block 3 ->
• RootSizeClass2 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
• RootSizeClass3 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
• ...

Carnegie Mellon

Coalescing Memory

Allocated

Allocated

■ Combine adjacent blocks if both are free
■ segregated lists: look forward and back using block sizes, then

■ Use the size of the coalesced block to determine the proper list
● What else might you need to do to maintain your seglists?

■ Insert into list using the insertion policy (LIFO, address-ordered, etc.)

■ Four cases:

block to
be freed

Allocated

Free

Free

Allocated

Free

Free
32

Carnegie Mellon

Debugging: GDB & The Almighty Heap Checker

Carnegie Mellon

34

What’s better than printf? Using GDB
● Use GDB to determine where segfaults happen!
● gdb mdriver will open the malloc driver in gdb

○ Type run and your program will run until it hits the segfault!
● step/next - (abbrev. s/n) step to the next line of code

○ next steps over function calls
● finish - continue execution until end of current function, then break
● print <expr> - (abbrev. p) Prints any C-like expression (including

results of function calls!)
○ Consider writing a heap printing function to use in GDB!

● x <expr> - Evaluate <expr> to obtain address, then
examine memory at that address
○ x /a <expr> - formats as address
○ See help p and help x for information about more formats

Carnegie Mellon

35

Using GDB - Fun with frames
■ backtrace - (abbrev. bt) print call stack up until current function

■ backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace
#0 find_fit (...)
#1 mm_malloc (...)
#2 0x0000000000403352 in eval_mm_valid
(...) #3 run_tests (...)
#4 0x0000000000403c39 in main (...)

■ frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
■ Good for inspecting local variables of calling functions

Carnegie Mellon

36

Using GDB - Setting breakpoints/watchpoints
■ break mm_checkheap - (abbrev. b) break on “mm_checkheap()”

■ b mm.c:25 - break on line 25 of file “mm.c” - very useful!
■ b find_fit if size == 24 - break on function “find_fit()” if the local

variable “size” is equal to 24 - “conditional breakpoint”

■ watch heap_listp - (abbrev. w) break if value of “heap_listp” changes -
“watchpoint”

■ w block == 0x80000010 - break if “block” is equal to this value
■ w *0x15213 - watch for changes at memory location 0x15213

■ Can be very slow

■ rwatch <thing> - stop on reading a memory location
■ awatch <thing> - stop on any memory access

What’s better than GDB? Using CGDB!
● CGDB is just like GDB

○ but with COLOR and SOURCE_CODE
● Breaking at mm_malloc in GDB vs CGDB

Colors!

C Code!

GDB
terminal!

Using CGDB
● Initializes the same as GDB

○ Just write cgdb
mdriver-dbg instead of
gdb mdriver-dbg

● Source and gdb windows
○ To go from gdb (default) to

source press esc (just like
normal mode in vim!!!!!)

○ to go from source to gdb
press i (just like insert mode
in vim!!!!!)

Source

GDB

Source Mode
● Benefits

○ see breakpoints in the file
○ reread code while

debugging
○ review what is coming● Usage
○ Very similar to vim!!
○ j - move down a line
○ k - move up a line
○ :### jump to line ###
○ /### search for ###
○ Most other vim

commands!● Notes
○ Green line number is current

line
○ Red line number is breakpoint

Breakpoint at
mm.c 610

Current Line
to execute

Viewed line

Next
Breakpoint

CGDB Misc
● GDB mode functions exactly like normal GDB!

○ All the commands you know and love work the same!
● Shark machines use version 0.6.8

○ Means unfortunately no assembly viewer :(though that is not often
needed.

● Website
○ https://cgdb.github.io/

● Documentation
○ https://cgdb.github.io/docs/cgdb.pdf
○ Version 0.7.1

https://cgdb.github.io/
https://cgdb.github.io/docs/cgdb.pdf

Carnegie Mellon

31

Heap Checker
■ int mm_checkheap(int verbose);
■ critical for debugging

■ write this function early!
■ update it when you change your implementation
■ check all heap invariants, make sure you haven't lost track of any part

of your heap
■ check should pass if and only if the heap is truly well-formed

■ should only generate output if a problem is found, to avoid cluttering up
your program's output

■ meant to be correct, not efficient

■ call before/after major operations when the heap should be
well-formed

Carnegie Mellon

42

Heap Invariants (Non-Exhaustive)
■ Block level

■ What are some things which should always be true of every block
in the heap?

Carnegie Mellon

43

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ What are some things which should always be true of every

element of a free list?

Carnegie Mellon

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ What are some things that should be true of the heap as a
who3le4?

Carnegie Mellon

29

Heap Invariants (Non-Exhaustive)
■ Block level

■ header and footer match
■ payload area is aligned, size is valid
■ no contiguous free blocks unless you defer coalescing

■ List level
■ next/prev pointers in consecutive free blocks are consistent
■ no allocated blocks in free list, all free blocks are in the free list
■ no cycles in free list unless you use a circular list
■ each segregated list contains only blocks in the appropriate size

class
■ Heap level

■ all blocks between heap boundaries, correct sentinel blocks (if
used)

Carnegie Mellon

46

Internal Fragmentation
■ Occurs when the payload is smaller than the block size

■ due to alignment requirements
■ due to management overhead
■ as the result of a decision to use a larger-than-necessary block

■ Depends on the current allocations, i.e. the pattern of previous
requests

Carnegie Mellon

Internal Fragmentation
■ Due to alignment requirements – the allocator doesn't know how

you'll be using the memory, so it has to use the strictest
alignment:

■ void *m1 = malloc(13); void *m2 = malloc(11);
■ m1 and m2 both have to be aligned on 8-byte boundaries

D e t
o

m nagem nt ove
r

e d
(

each cell
i

s 2 byte):

47

Carnegie Mellon

48

External Fragmentation
■ Occurs when the total free space is sufficient, but no single free

block is large enough to satisfy the request

■ Depends on the pattern of future requests
■ thus difficult to predict, and any measurement is at best an estimate

■ Less critical to malloc traces than internal fragmentation

p5 = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

Carnegie Mellon

C: Pointer Arithmetic
■ Adding an integer to a pointer is different from adding two

integers
■ The value of the integer is always multiplied by the size of

the type that the pointer points at
■ Example:

■ type_a *ptr = ...;
■ type_a *ptr2 = ptr + a;

■ is really computing
■ ptr2 = ptr + (a * sizeof(type_a));
■ i.e. lea (ptr, a, sizeof(type_a)), ptr2

■ Pointer arithmetic on void* is undefined (what's the size of a void?) 42

Carnegie Mellon

50

C: Pointer Arithmetic
■int *ptr = (int*)0x152130;
int *ptr2 = ptr + 1;

■ char *ptr
char *ptr2

=
=

(char*)0x152130;
ptr + 1;

■ char *ptr = (char*)0x152130;

void *ptr2 = ptr + 1;

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));

Carnegie Mellon

51

C: Pointer Arithmetic
■ int *ptr = (int*)0x152130;

int *ptr2 = ptr + 1; // ptr2 is 0x152134

■ char *ptr
char *ptr2

=
=

(char*)0x152130;
ptr + 1; // ptr2 is 0x152131

■ char *ptr = (char*)0x152130;
void *ptr2 = ptr + 1; // ptr2 is still 0x152131

■ char *ptr = (char*)0x152130;
char *p2 = ((char*)(((int*)ptr)+1));// p2 is 0x152134

Carnegie Mellon

52

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

Carnegie Mellon

46

Memory-Block Information

■ tells us where the blocks are, how big they are, and whether
they are free

■ must be able to update the data during calls to malloc and free
■ need to be able to find the next free block which is a “good enough

fit” for a given payload
■ need to be able to quickly mark a block as free or allocated
■ need to be able to detect when we run out of blocks

■ what do we do in that case?
■ The only memory we have is what we're handing out

■ ...but not all of it needs to be payload! We can use part of it to
store the block information.

Carnegie Mellon

Freeing Blocks

4 4 4 4 8

4 4 4 4 8

■ Simplest implementation is just clearing the “allocated” flag
■ but leads to external fragmentation

root

pfree(p)

malloc(8) Oops!
54

Carnegie Mellon

55

Insertion Policy
■ Where do you put a newly-freed block in the free list?

■ LIFO (last-in-first-out) policy
■ add to the beginning of the free list
■ pro: simple and constant time (very fast)
block->next = freelist; freelist = block;

■ con: studies suggest fragmentation is worse
■ Address-ordered policy

■ insert blocks so that free list blocks are always sorted by address
addr(prev) < addr(curr) < addr(next)

■ pro: lower fragmentation than LIFO
■ con: requires search

Carnegie Mellon

56

C: Pointer Casting
■ Notation: (b*)a “casts” a to be of type b*
■ Casting a pointer doesn't change the bits!

■ type_a *ptr_a=...; type_b *ptr_b=(type_b*)ptr_a;
makes ptr_a and ptr_b contain identical bits

■ But it does change the behavior when dereferencing
■ because we interpret the bits differently

■ Can cast type_a* to long/unsigned long and back
■ pointers are really just 64-bit numbers
■ such casts are important for malloclab
■ but be careful – this can easily lead to hard-to-find errors

Carnegie Mellon

46

Cycle Checking: Hare and Tortoise Algorithm
■ This algorithm detects cycles in

linked lists
■ Set two pointers, called “hare”

and “tortoise”, to thebeginning of
the list

■ During each iteration, move
“hare” forward by two nodes, “tortoise” by
one node

■ if “tortoise” reaches the end
of the list, there is no cycle

■ if “tortoise” equals “hare”, the list has a cycle

H

T
H

H

 H

T

T

T

Carnegie Mellon

47

Debugging Tip: Using the Preprocessor
■ Use conditional compilation with #if or #ifdef to easily turn

debugging code on or off

#ifdef DEBUG
#define DBG_PRINTF(...) fprintf(stderr, VA_ARGS)
#define CHECKHEAP(verbose) mm_checkheap(verbose)
#else
#define DBG_PRINTF(...)
#define CHECKHEAP(verbose)
#endif /* DEBUG */

// comment line below to disable debu
#define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

g code!

Carnegie Mellon

Debugging Tip: Using the Preprocessor
(contd)#define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

// #define DEBUG

void free(void *p) {
DBG_PRINTF(“freeing %p\n”, p);
CHECKHEAP(1);
...

}

void free(void *p) {
fprintf(stderr, “freeing %p\n”, p);
mm_checkheap(1);
...

}

void free(void *p) {
...

}

𝓹𝓻𝓮𝓹𝓻𝓸𝓬𝓮𝓼𝓼𝓸𝓻 𝓶𝓪𝓰𝓲𝓬

𝓹𝓻𝓮𝓹𝓻𝓸𝓬𝓮𝓼𝓼𝓸𝓻 𝓶𝓪𝓰𝓲𝓬

Replaced with debug code!

Debug code gone!

48

Carnegie Mellon

54

Header Reduction
● Note: this is completely optional and generally

discouraged due to its relative difficulty
○ Do NOT attempt unless you are satisfied with

your implementation as-is

● When to use 8 or 4 byte header? (must support
all possible block sizes)

● If 4 byte, how to ensure that payload is aligned?
● Arrange accordingly
● How to coalesce if 4 byte header block is followed

by 8 byte header block?
● Store extra information in headers

footerless

hd1 1

payload

hd1 1

hd1 0

ftr1 0 hd2 1

free

16 byte

