Carnegie Mellon

Malloc Bootcamp

Adittyo, Nidhi, Tiffany

March 19, 2023

Carnegie Mellon

Agenda

= Reminders about structs/unions
* Modularity and Design
= Increasing Utilization

= Eliminating footers
» Decreasing minimum block size
» Other improvements

= Asking for Help

= Appendix

Carnegie Mellon

Conceptual Outline

Me: *recompiles code |
know damn well | didn't change*

code breaks
Also me:

A

Carnegie Mellon

Anonymous Structs/Unions

struct
name
struct A { struct A {
Same idea with unions. \\ int x; y int x;
For the difference struct B { struct {
between unions and int y; int y;
structs, refer to the C float z; float z;
bootcamp slides. } my_b; b
} my a; w } my a;
member
name
e What is the type of x? int
e Howdoweaccess x ofmy a? my_a.x
e Whatis the type of my b? struct B
e Howdoweaccessy ofmy a? my a.my b.y my a.y

/** @br
typedef
/**
wor

*

/

ief Represents the header and payload of one block in the heap */
struct block {

@brief Header contains size + allocation flag */
d_t header;

@brief A pointer to the block payload.

epy): feel free to delete this comment once you've read it carefully.
We don't know what the size of the payload will be, so we will declare
it as a zero-length array, which is a GCC compiler extension. This will

allow us to obtain a pointer to the start of the payload.

WARNING: A zero-length array must be the last element in a struct, so

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

x]
cha

*/
} block

there should not be any struct fields after it. For this lab, we will
allow you to include a zero-length array in a union, as long as the
union is the last field in its containing struct. However, this is
compiler-specific behavior and should be avoided in general.

WARNING: DO NOT cast this pointer to/from other types! Instead, you
should use a union to alias this zero-length array with another struct,
in order to store additional types of data in the payload memory.

r payload[0O];

eplY): delete or replace this comment once you've thought about it.
Why can't we declare the block footer here as part of the struct?
Why do we even have footers -- will the code work fine without them?

which functions actually use the data contained in footers?

-

Carnegie Mellon

Zero-Length Arrays

struct line {
int length;
char contents[0];

b2

int main() {
struct line my line;
printf (“sizeof (contents) = %$zu\n”, (L.contents)) ;
printf (V“sizeof (struct line) = %$zu\n”, (struct line));

It's a GCC extension - not part of the C specification!
Must be at the end of a struct
o Can be a member of a union that’s at the end of a struct
sizeof on a zero-length array returns zero
But, at runtime, the zero-length array expands to fill any space after the struct
o struct line *1 = malloc(sizeof(struct line) + 23);
o Canuse 1->contents[0] through 1->contents[22] 6

https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html#Zero-Length

Time Management

® Labs in this course are NOT meant to be done in one sitting
o If one of the TAs or faculty sat down to redo this lab from scratch,
it would still take them at least a week

e Plan ahead, leave plenty of time for design
o Measure twice, cut once

e Work in small chunks of time
o One or two hours, then take a break
o Your brain can keep working subconsciously
o Leave time for “ahal!” moments

Carnegie Mellon

Modularity and Design

® Good style shouldn’t be an afterthought
o If you can read your own code it’s easier to debug
o It will make it easier to explain to students when you become a TA later :)

® Suggestions:
o Avoid long if-else chains (could you be using a loop?)
o Think carefully about how much work each function should do
o Use structs and unions to minimize pointer arithmetic
o Dedicate a few helper functions to capture all of the pointer arithmetic

® Descriptive file header comment explaining your block structure
e Descriptive function header comments

e Comment asyou go!
o Not just for style points, you’ll get confused too

Quick Example of Good and Bad Style

static const size t
bucket_sizes[N_BUCKETS] = {
// (some numbers)

s

static size t
get_bucket_size(int bucket) {
for (int 1 = @; 1 < N_BUCKETS; 1i++) {
if (1 == bucket) {
return bucket sizes[1];
}
}

return 0;

Quick Example of Good and Bad Style

static const size t static const size t
bucket_sizes[N BUCKETS] = { bucket_sizes[N BUCKETS] = {
// (some numbers) // (some numbers)
¥ ¥
static size t static size t
get_bucket_size(int bucket) { get_bucket_size(int bucket) {
for (int 1 = @; 1 < N_BUCKETS; 1i++) { assert(bucket >= 0 && bucket < N_BUCKETS);
if (1 == bucket) { return bucket sizes[bucket];
return bucket sizes[1]; }
}
}
return 0;

Quick Example of Good and Bad Style

/** /**

* Array of bucket sizes. * “Bucket” sizes for free lists.

*/ * Free list "1 holds free blocks whose
static const size_t * allocated size is <= " bucket_size[i]"
bucket_sizes[N_BUCKETS] = { * but >= “bucket_size[i-1]".

// (some numbers) * (Notionally, “bucket_size[-1]" is zero.)
¥ */
static const size_t
bucket_sizes[N_BUCKETS] = {
// (some numbers)

s

Carnegie Mellon

Eliminate footers in allocated blocks

Reduces internal fragmentation (increases utilization)

Why do we need footers?

o Coalescing blocks

o What kind of blocks do we coalesce?

Do we need to know the size of a block if we're not

going to coalesce it?

Based on that idea, can you design a method that

helps you determine when to coalesce?

o Hint: where could you store a little bit of extra
information for each block?

m1

next

prev

m1

m2

payload

m3

payload

free
blocks
still have
footers

allocated
blocks
don’t
have
footers!

Za

12

Coalescing Memory

=« Combine adjacent blocks if both are free
« footerless: if free, obtain info from footer then use next/prev

= Four cases:

Allocated Allocated Free Free

block to
be freed

Allocated Free Allocated Free

13

Finding a Free Block

= First Fit
= Search from beginning, use first block that's big enough

= linear time in total number of blocks
= can cause small “splinters” at beginning of list

= Next Fit

= start search from where previous search finished

= Often faster than first fit, but some research suggests worse
fragmentation

. Best Fit

= Search entire list, use smallest block that's big enough

- keeps fragments small (less wasted memory), but slower than first fit

. Better Fit
« First fit, then bounded best fit
« Bounded best fit, then first fit

42

Decrease the minimum block size

e Reduces internal fragmentation (increase
utilization)

e Currently, min block size is 32. s bloci Size:
o 8 byte header
o 16 byte payload (or 2 8 byte pointers for free)
o 8 byte footer footer block size... F

e If you just need to malloc(5), and the payload size

F

potential payload space (16)

is 16 bytes, you waste 11 bytes. e —b'°°k ek 8
e Must manage free blocks that are too small to hold T
the pointers for a doubly linked free Iist/ . o dioa A

A lot of bytes are wasted!
How can we prevent this?

15

e
Decrease the minimum block size

HINT: Your minimum block size should be 16 in order to pass final,
meaning you only keep 2 of the fields that we had before.
We need to pick one field to remove

Remove Prev field
Remove Next field
Remove Header

Compress Header

T
Small utilization improvements

e Insertion Policy
o LIFO (last-in-first-out) vs FIFO (first-in-first-out)
e Segregated List Buckets
o Potentially reconsider size classes (only 128 bytes for global
variables)
m Diminishing returns
m Adjust buckets based trace files (please don’t hard code)
e Chunksize
o Potentially reconsider smaller size
e Fit Algorithm
o First-fit
o Best-fit (which segregated list approximates)
o Better Fit (ex. search for the next 20 blocks after finding a fit)

How to Ask for Help

e Be specific about what the problem is, and how to cause it
o BAD: “My program segfaults.”
o GOOD: “l ran mdriver in gdb and it says that a segfault occurred due to

an invalid next pointer, so | set a watchpoint on the segfaulting next
pointer. How can | figure out what happened?”

o GOOD: “My heap checker indicates that my segregated list has a block
of the wrong size in it after performing a coalesce(). WWhy might that be
the case?”

o What sequence of events do you expect around the time of
the error? What part of the sequence has already happened?

e Have you written your mm_checkheap function, and is it working?

o We WILL ask to see it!

e Use arubber duck! 18

-
Ways to Improve

Optimization Utilization | Throughput
Implicit List (Starter Code) 59% 10-100
Explicit Free List b 2000-5000
Segregated Free Lists - 11000
Better Fit Algorithm 59% Variable
Eliminating Footers in Allocated Blocks +9% -
Decreasing Block Size/Mini Blocks +6% -20%
Compressing Headers +2% -

source: writeup

Carnegie Mellon

If You Get Stuck

m Please read the writeup!

=« CS:APP Chapter 9
« View lecture notes and course FAQ at

http://www.cs.cmu.edu/~213

= Post a private question on Piazza

20

http://www.cs.cmu.edu/~213

APPENDIX

21

Dynamic Memory Allocation

« Used when
= we don't know at compile-time how much memory we will need
=« When a particular chunk of memory is not needed for the entire run
=« lets us reuse that memory for storing other things
= Important terms:
=« Mmalloc/calloc/realloc/free
mem_sbrk
payload
fragmentation (external vs internal)
Splitting / coalescing

Carnegie Mellon

mm_init
= Why prologue footer and Prologue footer |
epilogue header? Epilogue header | nro
= Payload must be 16-byte
aligned)
Prologue footer) "
= But, the size of payload doesn’t Size = chunk size | |* n+8
have to be a multiple of 16 - just rounded Up - n+16
the block does!
prev
= Things malloc’d must be within Size = chunk size |
the prologue and epilogue rounded up

Epilogue header

If We Can't Find a Usable Free Block

=« Assume an implicit list implementation
=« Need to extend the heap

stack
= mem_sbrk()
= sbrk(num_bytes) allocates space and iL
returns pointer to start ﬁ
= Sbrk(0) returns a pointer to the end of « current brk
the current heap heap pointer
=« For speed, extend the heap by a little
more than you need immediately uninitialized data
= Use what you need out of the new initialized data
space, add the rest as a free block program code
=« What are some tradeoffs you can 0

make? 6

Tracking Blocks: Explicit List

Maintain a list of free blocks instead of all blocks
= means we need to store forward/backward pointers, not just sizes
= we only track free blocks, so we can store the pointers in the payload area!
= need to store size at end of block too, for coalescing

allocated block free block
size 1 size 0
next
prev
payload and
padding
unused
size 1 size 0
25

Splitting a Block

=« If the block we find is larger than
. 0 1
we need, split it and leave the " i
: : next payload
remainder for a future allocation orev
= explicit lists: correct previous and m
next pointers nm 0
= Segregated lists: same as next
explicit PIEY
« When would we not split a
block? - 0 - 0

26

Coalescing Memory

=« Combine adjacent blocks if both are free
= explicit lists: look forward and backward in the heap, using block

sizes, not next/prev

= Four cases:

Allocated Allocated Free Free

block to
be freed

Allocated Free Allocated Free

27

Coalescing Memory

m1 0 n+m1 0 m1 0 n+m1+m2 |0
next next next next
prev prev prev prev
m1 0 m1 0
n n
n 1 n+m1 0 n 1
m2 1 m2 1 m2 0
next
payload payload prev
m2 1 m2 1 m2 0 n+tm1+m2 |0

28

Design Considerations

=« Finding a matching free block
« First fit vs. next fit vs. best fit vs. “good enough” fit

= continue searching for a closer fit after finding a big-enough free
block?

= Free block ordering

= LIFO, FIFO, or address-ordered?
= When to coalesce

= While freeing a block or while searching for free memory?
= How much memory to request with sbrk()

= larger requests save time in system calls but increase maximum
memory use 14

Hints on hints

For the final, you must greatly increase the utilization and keep
a high throughput.

e Reducing external fragmentation requires achieving something closer
to best-fit allocated
o Using a better fit algorithm
o Combine with a better data structure that lets you run more
complex algorithms

e Reducing internal fragmentation requires reducing data structure
overhead and using a ‘good’ free block

30

Carnegie Mellon

Segregated Lists

« Multiple explicit lists where the free blocks are of a certain size range

* Increases throughput and raises probability of choosing a
better-sized block

* Need to decide what size classes (only 128 bytes of stack space)
o Diminishing returns
o What do you do if you can’t find something in the current size class?

* RootSizeClass1 -> free-block 1 -> free-block 2 -> free-block 3 ->
* RootSizeClass2 -> free-block 1 -> free-block 2 -> free-block 3 -> ...
* RootSizeClass3 -> free-block 1 -> free-block 2 -> free-block 3 -> ...

31

Coalescing Memory

=« Combine adjacent blocks if both are free

« segregated lists: look forward and back using block sizes, then

=« Use the size of the coalesced block to determine the proper list
e \What else might you need to do to maintain your seglists?
= Insert into list using the insertion policy (LIFO, address-ordered, etc.)

= Four cases:

Allocated Allocated Free Free

block to)
be freed

Allocated Free Allocated Free

32

Carnegie Mellon

Debugging: GDB & The Almighty Heap Checker

When your scattered print statements
don't reveal where the error is

. f . -
5 R

B

All n'ght‘,.then. Keep your secrets.
-~

)

B ALY

Carnegie Mellon

What's better than printf? Using GDB

e Use GDB to determine where segfaults happen!
e gdb mdriver will open the malloc driver in gdb
o Type run and your program will run until it hits the segfault!
e step/next - (abbrev. s/n) step to the next line of code
o next steps over function calls
e finish - continue execution until end of current function, then break
e print <expr> - (abbrev. p) Prints any C-like expression (including
results of function calls!)
o Consider writing a heap printing function to use in GDB!
e X <expr> - Evaluate <expr> to obtain address, then
examine memory at that address
o X /a <expr> - formats as address

o See help p and help x for information about more formats .
4

Using GDB - Fun with frames

m backtrace - (abbrev. bt) print call stack up until current function
m backtrace full - (abbrev. bt full) print local variables in each frame

(gdb) backtrace

#0 find_fit (...)

#1 mm_malloc (...)

#2 0x0000000000403352 in eval_mm_valid
(...) #3 run_tests (...)

#4 0x0000000000403c39 in main (...)

m frame 1 - (abbrev. f 1) switch to mm_malloc’s stack frame
m Good for inspecting local variables of calling functions

35

Using GDB - Setting breakpoints/watchpoints

s break mm_checkheap - (abbrev. b) break on “mm_checkheap()”
m b mm.c:25 - break on line 25 of file “mm.c” - very useful!
m b find_fit if size == 24 - break on function “find_fit()” if the local
variable “size” is equal to 24 - “conditional breakpoint”

= watch heap_listp - (abbrev. w) break if value of “heap_listp” changes -
“‘watchpoint”
m W block == 0x80000010 - break if “block” is equal to this value
m W *0x15213 - watch for changes at memory location 0x15213
m Can be very slow

m rwatch <thing> - stop on reading a memory location

m awatch <thing> - stop on any memory access
36

What's better than GDB? Using CGDB!

« CGDB is just like GDB
R and SOURCE_CODE

o butwith C

« Breaking at mm_malloc in GDB vs CGDB

(N N J gdb mdriver-dbg

£45% TE21GB—— (© 3/19,12:07 PM

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This 1is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying'

and "show warranty" for details.

This GDB was configured as 'x86_64-redhat-linux-gnu".

For bug reporting 1instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Reading symbols from /afs/andrew.cmu.edu/usr10/jmcamero/private/213_testing/mall
oclab-s20/mdriver-dbg. . .done.

(gdb) b mm_malloc

Breakpoint 1 at 0x40441c: file mm.c, line 580.

(gdb) -f traces/syn-array-short.rep

Undefined command: "-f". Try "help".

(gdb) r -f traces/syn-array-short.rep

Starting program: /afs/andrew.cmu.edu/usrl®/jmcamero/private/213_testing/mallocl
ab-s20/mdriver-dbg —-f traces/syn-array-short.rep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Found benchmark throughput 8009 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, be
nchmark regular

Throughput targets: min=4004, max=7208, benchmark=8009

Breakpoint 1, mm_malloc (size=9904) at mm.c:580
dbg_requires(mm_checkheap (__LINE__));

Colors!

C Code!

GDB
terminal!

cgdb mdriver-dbg

JE21GB————————— (© 3/19,12:09 PM

<Are there any preconditions or postconditions?>

void *malloc(size_t size) {
dbg_requires(mm_checkheap(__LINE__));

size_t asize; // Adjusted block size
size_t extendsize; // Amount to extend heap if no fit is found
block_t *block;
void xbp = NULL;
/afs/andrew.cmu.edu/usrl0/jmcamero/private/213_testing/malloclab-s20/mm.c
r -f traces/syn-struct.rep
(gdb) r -f traces/syn-mix-short.rep
Starting program: /afs/andrew.cmu.edu/usrl®/jmcamero/private/213_testing/mallocl
ab-s20/mdriver-dbg —-f traces/syn-mix-short.rep
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib64/libthread_db.so.1".
Found benchmark throughput 8009 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, be
nchmark regular
Throughput targets: min=4004, max=7208, benchmark=8009

Breakpoint 1, mm_malloc (size=9904) at mm.c:580
(gdb)

Source

Using CGDB

o Initializes the same as GDB
o Just write cgdb

mdriver-dbg instead of
gdb mdriver-dbg

« Source and gdb windows
o To go from gdb (default) to
source press esc (just like
normal mode in vim!!!!!)
o to go from source to gdb
pressi (just like insert mode

in vim!!!)
GDB

cgdb mdriver-dbg

JE21IGB———————— (© 3/19,12:116 PM

// Ignore spurious request

if (size == 0) {
dbg_ensures (mm_checkheap (__LINE__));
return bp;

}

// Adjust block size to include overhead and to meet alignment requirem
asize = round_up(size + dsize, dsize);

// Search the free list for a fit
block = find_fit(asize);

// If no fit is found, request more memory, and then and place the bloc
if (block == NULL) {

// Always request at least chunksize

extendsize = max(asize, chunksize);

block = extend_heap(extendsize);

// extend_heap returns an error

if (block ULL) {

return bp;

}

/afs/andrew.cmu.edu/usrl®/jmcamero/private/213_testing/malloclab-s20/mm.c

r —f traces/syn-string-scaled.rep

r —f traces/syn-string-short.rep

r -f traces/syn-string.rep

r —-f traces/syn-struct-scaled.rep

r -f traces/syn-struct-short.rep

r -f traces/syn-struct.rep

(gdb) r —-f traces/syn-mix-short.rep

Starting program: /afs/andrew.cmu.edu/usr10/jmcamero/private/213_testing/mallocl
ab-s20/mdriver-dbg -f traces/syn-mix-short.rep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Found benchmark throughput 8009 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, be
nchmark regular

Throughput targets: min=4004, max=7208, benchmark=8009

Breakpoint 1, mm_malloc (size=9904) at mm.c:580
(gdb) n

(gdb)

(gdb)

(gdb)

(gdb)

(gdb) _

cgdb mdriver-dbg

JE226B————— (© 3/19,12:31PM

Current Line return bp;

i
S O u rce M Od e to exeCUte // Adjust block size to include overhead and to meet alignment requirem

asize = round_up(size + dsize, dsize);

// Search the free list for a fit
block = find_fit(asize);

.
o Benefits Viewed line
// If no fit is found, request more memory, and then and place the bloc
. . . if (block == NULL) {
O See brea prIntS In the flle i // Always request at least chunksize

extendsize = max(asize, chunksize);

o re read COd e Wh i |e block = extend_heap(extendsize);

// extend_heap returns an error
if (block == NULL) {

debugging /v " et
. . . 1
d usa'gé eW What IS CO m I ng Next // The block should be marked as free
dbg_assert(!get_alloc(block));

o . . . ! ! .
Very SI m I |a r tO VI m Brea kp0|nt /afs/andrew.cmu.edu/usr10/jmcamero/private/213_testing/malloclab-s20/mm.c
H H r -f traces/syn-string.rep
@) J = m Ove d Own a I I n e r =f traces/si:ﬁ—str:ct—scaled .rep

r -f traces/syn-struct-short.rep

O k = move Up a Ilne r —f traces/syn-struct.rep

(gdb) r -f traces/syn-mix-short.rep

. . . Starting program: /afs/andrew.cmu.edu/usrl0/jmcamero/private/213_testing/mallocl
O _### Jul I Ip to |Ine ### ab-s20/mdriver-dbg -f traces/syn-mix-short.rep

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1ib64/libthread_db.so.1".
@) /### Sea rCh for ### Found benchmark throughput 8009 for cpu type Intel(R)Xeon(R)CPUE5520@2.27GHz, be

. . nchmark regular]
e} Most Other Vlm BreaprInt at Throughput targets: min=4004, max=7208, benchmark=8009

Breakpoint 1, mm_malloc (size=9904) at mm.c:580

® NOte@mmandS' mm.c 610 (gdb) n

(gdb)
(gdb)
(gdb)

o @Green line number is current
(gdb) b mm.c:610

Ilne Breakpoint 2 at 0x40452f: file mm.c, line 610.
(gdb)

™ . J 1" e o st el " e 1, L

S
CGDB Misc

GDB mode functions exactly like normal GDB!
o All the commands you know and love work the same!

« Shark machines use version 0.6.8
o Means unfortunately no assembly viewer :(though that is not often
needed.

Website
o https://cadb.qithub.io/

« Documentation
o https://cadb.qgithub.io/docs/cadb.pdf
o Version 0.7.1

https://cgdb.github.io/
https://cgdb.github.io/docs/cgdb.pdf

Heap Checker

= int mm_checkheap(int verbose);

=« critical for debugging
= write this function early!

= Update it when you change your implementation
= check all heap invariants, make sure you haven't lost track of any part
of your heap
= check should pass if and only if the heap is truly well-formed
= should only generate output if a problem is found, to avoid cluttering up
your program's output
= meant to be correct, not efficient

= call before/after major operations when the heap should be
well-formed 31

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

« Block level
« What are some things which should always be true of every block

in the heap?

42

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match

= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level
» What are some things which should always be true of every

element of a free list?

43

Carnegie Mellon

Heap Invariants (Non-Exhaustive)

= Block level
= header and footer match

= payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level
= next/prev pointers in consecutive free blocks are consistent

= No allocated blocks in free list, all free blocks are in the free list

= NO cycles in free list unless you use a circular list

= each segregated list contains only blocks in the appropriate size
class

« Heap level

» What are some things that should be true of the heap as a
who3le4?

Carnegie Mellon

Heap Invariants (Non-Exhaustive)
= Block level

= header and footer match

« payload area is aligned, size is valid
= NO contiguous free blocks unless you defer coalescing

= List level
= next/prev pointers in consecutive free blocks are consistent

= No allocated blocks in free list, all free blocks are in the free list
= NO cycles in free list unless you use a circular list
= each segregated list contains only blocks in the appropriate size
class
« Heap level

= all blocks between heap boundaries, correct sentinel blocks (if 29
used)

Internal Fragmentation

= Occurs when the payload is smaller than the block size
= due to alignment requirements

« due to management overhead
= as the result of a decision to use a larger-than-necessary block

=« Depends on the current allocations, i.e. the pattern of previous
requests

46

Internal Fragmentation

=« Due to alignment requirements — the allocator doesn't know how
you'll be using the memory, so it has to use the strictest
alignment:

= void *m1 = malloc(13); void *m2 = malloc(11);
= M1 and m2 both have to be aligned on 8-byte boundaries

47

Carnegie Mellon

External Fragmentation

= Occurs when the total free space is sufficient, but no single free
block is large enough to satisfy the request

= Depends on the pattern of future requests
« thus difficult to predict, and any measurement is at best an estimate
s Less critical to malloc traces than internal fragmentation

pS = malloc(4)

free(p1)

p6 = malloc(5) Oops! Seven bytes available, but not in one chunk....

48

Carnegie Mellon

C: Pointer Arithmetic

=« Adding an integer to a pointer is different from adding two
integers

=« The value of the integer is always multiplied by the size of
the type that the pointer points at

« Example:
« type _a *ptr=..;
« type a *ptr2 = ptr + a;
= IS really computing
= ptr2 = ptr + (a * sizeof(type_a));
= .. lea (ptr, a, sizeof(type_a)), ptr2
« Pointer arithmetic on void* is undefined (what's the size of a void?) 49

Carnegie Mellon

C: Pointer Arithmetic

«1int *ptr = (1nt*)0x152130;
= ptr + 1;

int *ptr2 =

(char*)0x152130;

= char *ptr =

char *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;

vold *ptr2 = ptr + 1;

= char *ptr = (char*)0x152130;
((char*) (((int*)ptr)+1));

char *p2 =
50

Carnegie Mellon

C: Pointer Arithmetic

= 1nt *ptr = (int*)0x152130;
ptr + 1; //ptr21s0x152134

int *ptr2 =
= (char*)0x152130;

= Char *ptr =
char *ptr2 = ptr + 1; //ptr21s 0x152131

(char*)0x152130;
ptr + 1; //ptr2isstill 0x152131

= cChar *ptr =
vold *ptr2 =

= char *ptr = (char*)0x152130;
char *p2 = ((char*) (((int*)ptr)+1));//p21s0x152134

51

Carnegie Mellon

Dynamic Memory Allocation: Example

p1 = malloc(3)

p2 = malloc(7)

p3 = malloc(5)

free(p2)

p4 = malloc(4)

p5 = malloc(4)

52

Memory-Block Information

= tells us where the blocks are, how big they are, and whether
they are free

=« must be able to update the data during calls to malloc and free

= Need to be able to find the next free block which is a “good enough
fit” for a given payload
= Need to be able to quickly mark a block as free or allocated

= need to be able to detect when we run out of blocks
= what do we do in that case?

=« The only memory we have is what we're handing out
= ...but not all of it needs to be payload! We can use part of it to
store the block information. 46

Freeing Blocks

« Simplest implementation is just clearing the “allocated” flag
= but leads to external fragmentation

t

4 4 4 4 8

T

malloc(8) Oops!
54

Insertion Policy

= Where do you put a newly-freed block in the free list?
« LIFO (last-in-first-out) policy
= add to the beginning of the free list
= pro: simple and constant time (very fast)

block->next = freelist; freelist = block;
= con: studies suggest fragmentation is worse

=« Address-ordered policy
sinsert blocks so that free list blocks are always sorted by address

addr(prev) < addr(curr) < addr(next)
= pro: lower fragmentation than LIFO
= CON: requires search

95

C: Pointer Casting

= Notation: (b*) a “casts” a to be of type b*
« Casting a pointer doesn't change the bits!
= type a *ptr a=...; type b *ptr b=(type b*)ptr a;
makes ptr_a and ptr_b contain identical bits
« But it does change the behavior when dereferencing
= because we interpret the bits differently
= Can cast type a* tolong/unsigned long and back

= pointers are really just 64-bit numbers

= such casts are important for malloclab
= but be careful — this can easily lead to hard-to-find errors

56

Cycle Checking: Hare and Tortoise Algorithm

« This algorithm detects cycles in H
linked lists . D
« Set two pointers, called “hare” < H
and .tort0|se , to thebeginning of < - YD
the list
H
= During each iteration, move R T R
“hare” forward by two nodes, “tortoise” by ST q
one node L
=« if “tortoise” reaches the end = _Ti ')

of the list, there is no cycle
=« if “tortoise” equals “hare”, the list has a cycle

Carnegie Mellon

Debugging Tip: Using the Preprocessor

= Use conditional compilation with #if or #ifdef to easily turn
debugging code on or off

#ifdef DEBUG

#define DBG_PRINTF(...) fprintf (stderr, VA ARGS)
#define CHECKHEAP (verbose) mm_checkheap (verbose)
#else

// comment line below to disable debu|g code!

#define DBG_PRINTF(...) #define DEBUG

#define CHECKHEAP (verbose)

! . *
#endif /* DEBUG */ void free (void *p) {

DBG PRINTF (“freeing %p\n”, p);
CHECKHEAP (1) ;

47

Carnegie Mellon

Debugglng Tip: Using the Preprocessor

PR A
#deflne DEBUG void free (void *p) {
fprintf (stderr, “freeing %p\n”, p);
void free(void *p) { mm checkheap (1) ;
DBG PRINTF (“freeing %p\n”, p);
CHECKHEAP (1) ;
: preprocessor magic > Replaced with debug code!

void free(void *p) {

void free(void *p) { }

DBG_PRINTF (“freeing %p\n”, p); ___y\\\\\
CHECKHEAP (1) ;

e e E:> Debug code gone!

48

Carnegie Mellon

. | yte |
Header Reduction e
| footerless |

e Note: this is completely optional and generally hdt | 1
discouraged due to its relative difficulty
o Do NOT attempt unless you are satisfied with

your implementation as-is payload

hd1 | 1

e \When to use 8 or 4 byte header? (must support
all possible block sizes) free |

e |f 4 byte, how to ensure that payload is aligned? o | @

e Arrange accordingly

e How to coalesce if 4 byte header block is followed

by 8 byte header block?
e Store extra information in headers il e hd2 | 1

o4

