
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network Programming: Part I

15-213/14-513/15-513: Introduction to Computer Systems
20th Lecture, November 14, 2023

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Network Layers: Bird’s Eye View
 Global IP Internet CSAPP 11.3
 Sockets Interface CSAPP 11.4

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

How to Design a Network?

 Has many users
 Offers diverse services
 Mixes very diverse

technologies

 Components built by many
companies

 Diverse ownership
 Can evolve over time

Application
Operating System

Protocol Software
Computer

Links

Router Hardware

Router Software
(many protocols)

Bridge HW/SW

Application
Operating System

Computer
Network Interface

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution #1?

Web FTP VoiceTelnet

Tw. Pair Coax WirelessOptical

Video

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Solution #2

Web FTP VoiceTelnet

Tw. Pair Coax WirelessOptical

Intermediate Layer

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Layering: A Modular Approach to Networking

Application

Application
Channel

Host to
Host

Hardware

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Application – Establish an idiom for communicating
with a particular application

 Transport – Establish endpoints useful to a programmer
 Network – Given multiple inter-connected LANs,

achieve cross-connectivity
 Link – Manage the channel to enable actual

communication, i.e. establish a LAN
 Physical – Establish a channel with connectivity and

signaling

Application

Transport

Network

Data link

Physical

Network Reference Model

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical Layer: Establishes the Channel

 Medium? Light? Radio frequency? Electrical signals?
 What color(s) of light? How bright?
 What RF frequencies? How powerful?
 What signals represent what values?
 What shape are the connectors?
 How far can cables run?
 Etc.

 We have a functioning physical layer once we can send and
receive signals.

Physical

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Physical Layer: Bandwidth vs. Latency
 Bandwidth = bits/second
 Improved with parallelism or faster clock rate

 Latency = Function of signal propagation speed
 Limited by speed of light
 Major paradigm shift would be needed to make traffic to India or

China less latent

 Latency tends to be limiting at a global scale
 Speed of light over long distances

 Bandwidth may be limited at local scale, e.g. data center
 How to divide up and recombine messages to utilize parallelism?
 How to clock faster without losing signal to noise.

Physical

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Link Layer: Manages the Channel
 When do we start transmitting? When do we stop?
 When do we start receiving? When do we stop?
 Who is sending? Who is receiving?
 How do we know if it is correct?
 What happens if there is contention for, or collision in, a

shared channel?
 Key contributions: Framing, among others
 We have a functioning link layer once we can build a

functioning local area network (LAN) of at least two stations.

Data link

Physical

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Network layer: Scaling up
 Passing messages among multiple networks
 For scale
 Of different types (wired, wireless, fiber, infrared, etc)
 Managed by different domains, etc.

 Globally meaningful addressing: IPv4, IPv6
 Ability to choose paths among multiple options

 We have a functioning network layer once we can connect
multiple networks, identify hosts among them, and messages
can find their way across networks from source to destination.

Network

Data link

Physical

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Transport Layer: Meaningful endpoints
 Hosts don’t do communication – various aspects of software

systems do
 Consider how many different sessions your Web browser has with servers.

Now add for your IM sessions, upgrades-in-progress, music streaming, etc.
 Endpoints enable the establishment of sessions
 Classic model is <IPaddress:port>:<IPaddress:port>
 Client: Ephemeral port. Host: Well-known port

 Character of communication
 Reliable/session-oriented, e.g. TCP
 Unreliable/datagram, e.g. UDP
 Etc.

 The transport layer exists once we have the ability
to establish communication from end-point to end-point
with well-understood properties.

Transport

Network

Data link

Physical

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Application Layer: Purposeful Communication

 Defined by the messaging we, as programs, bake into our
applications, shaped by our applications
 e.g., client-server interactions, peer-to-peer interactions, etc.

 E.g., HTTP: PUT, GET, POST, etc.
 E.g., DNS: queries, responses, updates, etc.
 MIME, VOIP protocols, etc.
 Application protocols exist when applications can communicate

Application

Transport

Network

Data link

Physical

Application

Transport

Network

Data link

Physical

Network

Data link

Physical

Network

Data link

Physical

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Network Layers: Bird’s Eye View
 Global IP Internet
 Sockets Interface

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Map of 460 Billion Device Connections to
the Internet collected by the Carna Botnet

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global IP Internet
 Based on the TCP/IP protocol family
 IP (Internet Protocol)

 Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

 UDP (Unreliable Datagram Protocol)
 Uses IP to provide unreliable datagram delivery from

process-to-process
 TCP (Transmission Control Protocol)

 Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the
sockets interface

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Client-Server Transaction
 Most network applications are based on the client-server

model:
 A server process and one or more client processes
 Server manages some resource
 Server provides service by manipulating resource for clients
 Server activated by request from client (vending machine analogy)

Client
process

Server
process

1. Client sends request

3. Server sends response4. Client
handles

response

2. Server
handles
request

Resource

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware and Software Organization
of a Client-Server Internet Application

TCP/IP

Client

Network
adapter

Global IP Internet

TCP/IP

Server

Network
adapter

Internet client host Internet server host

Sockets interface
(system calls)

Hardware interface
(interrupts)

User code

Kernel code

Hardware
and firmware

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses
 128.2.203.179
 127.0.0.1 (always localhost)

2. The set of IP addresses is mapped to a set of identifiers
called Internet domain names
 128.2.217.3 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate with a
process on another Internet host over a connection

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Aside: IPv4 and IPv6
 The original Internet Protocol, with its 32-bit addresses, is

known as Internet Protocol Version 4 (IPv4)
 1996: Internet Engineering Task Force (IETF) introduced

Internet Protocol Version 6 (IPv6) with 128-bit addresses
 Intended as the successor to IPv4

 Majority of Internet traffic still carried by IPv4

 We will focus on IPv4, but will show you how to write
networking code that is protocol-independent.

IPv6 traffic at Google

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(1) IP Addresses
 32-bit IP addresses are stored in an IP address struct
 IP addresses are always stored in memory in network byte order

(big-endian byte order)
 True in general for any integer transferred in a packet header from one

machine to another.
 E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
 uint32_t s_addr; /* network byte order (big-endian) */
};

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dotted Decimal Notation
 By convention, each byte in a 32-bit IP address is represented

by its decimal value and separated by a period
 IP address: 0x8002C2F2 = 128.2.194.242

 Use getaddrinfo and getnameinfo functions (described
later) to convert between IP addresses and dotted decimal
format.

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(2) Internet Domain Names

.net .edu .gov .com

cmu berkeleymit

cs ece

whaleshark
128.2.210.175

ics

unnamed root

pdl

www
128.2.131.66

amazon

www
54.230.48.28

First-level domain names

Second-level domain names

Third-level domain names

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Domain Naming System (DNS)
 The Internet maintains a mapping between IP addresses and

domain names in a huge worldwide distributed database
called DNS

 Conceptually, programmers can view the DNS database as a
collection of millions of host entries.
 Each host entry defines the mapping between a set of domain names and IP

addresses.
 In a mathematical sense, a host entry is an equivalence class of domain

names and IP addresses.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings
 Can explore properties of DNS mappings using nslookup

 In these slides, the output is edited for brevity

 Each host has a locally defined domain name localhost
which always maps to the loopback address 127.0.0.1

 Use hostname to determine real domain name of local host:

linux> nslookup localhost
Address: 127.0.0.1

linux> hostname
whaleshark.ics.cs.cmu.edu

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)
 Simple case: one-to-one mapping between domain name and IP

address:

 Multiple domain names mapped to the same IP address:

linux> nslookup whaleshark.ics.cs.cmu.edu
Address: 128.2.210.175

linux> nslookup cs.mit.edu
Address: 18.62.1.6
linux> nslookup eecs.mit.edu
Address: 18.62.1.6

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Properties of DNS Mappings (cont)
 Multiple domain names mapped to multiple IP addresses:

 Some valid domain names don’t map to any IP address:

linux> nslookup www.twitter.com
Address: 104.244.42.65
Address: 104.244.42.129
Address: 104.244.42.193
Address: 104.244.42.1

linux> nslookup www.twitter.com
Address: 104.244.42.129
Address: 104.244.42.65
Address: 104.244.42.193
Address: 104.244.42.1

linux> nslookup ics.cs.cmu.edu
(No Address given)

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

(3) Internet Connections
 Clients and servers communicate by sending streams of bytes

over connections. Each connection is:
 Point-to-point: connects a pair of processes.
 Full-duplex: data can flow in both directions at the same time,
 Reliable: stream of bytes sent by the source is eventually received by

the destination in the same order it was sent.

 A socket is an endpoint of a connection
 Socket address is an IPaddress:port pair

 A port is a 16-bit integer that identifies a process:
 Ephemeral port: Assigned automatically by client kernel when client

makes a connection request.
 Well-known port: Associated with some service provided by a server

(e.g., port 80 is associated with Web servers)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Well-known Service Names and Ports
 Popular services have permanently assigned well-known

ports and corresponding well-known service names:
 echo servers: echo 7
 ftp servers: ftp 21
 ssh servers: ssh 22
 email servers: smtp 25
 Web servers: http 80

 Mappings between well-known ports and service names
is contained in the file /etc/services on each Linux
machine.

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Anatomy of a Connection
 A connection is uniquely identified by the socket

addresses of its endpoints (socket pair)
 (cliaddr:cliport, servaddr:servport)

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)Client

Client socket address
128.2.194.242:51213

Server socket address
208.216.181.15:80

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

Kernel

Kernel

Client

Client

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Canvas Quiz: Day 20 – Network Programming (part I)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Network Layers: Bird’s Eye View
 Global IP Internet
 Sockets Interface

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sockets Interface
 Set of system-level functions used in conjunction with

Unix I/O to build network applications.

 Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols.

 Available on all modern systems
 Unix variants, Windows, OS X, IOS, Android, ARM

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Client Server

Sockets
 What is a socket?
 To the kernel, a socket is an endpoint of communication
 To an application, a socket is a file descriptor that lets the

application read/write from/to the network
 Remember: All Unix I/O devices, including networks, are

modeled as files

 Clients and servers communicate with each other by
reading from and writing to socket descriptors

 The main distinction between regular file I/O and socket
I/O is how the application “opens” the socket descriptors

clientfd serverfd

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Programming Example
 Echo server and client
 Server
 Accepts connection request
 Repeats back lines as they are typed

 Client
 Requests connection to server
 Repeatedly:

 Read line from terminal
 Send to server
 Read reply from server
 Print line to terminal

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server/Client Session Example

whaleshark: ./echoserveri 6616
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33707) (A)
server received 26 bytes (B)
server received 17 bytes (C)
Connected to (BAMBOOSHARK.ICS.CS.CMU.EDU, 33708) (D)
server received 29 bytes (E)

bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (A)
This line is being echoed (B)
This line is being echoed
This one is, too (C)
This one is, too
^D
bambooshark: ./echoclient whaleshark.ics.cs.cmu.edu 6616 (D)
This one is a new connection (E)
This one is a new connection
^D

Client

Server

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

socket read

socket write
socket read

terminal write

terminal read
socket write

Connection
request

socket read

close

close EOF

accept

open_listenfd

open_clientfd

Await connection
request from client

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets
rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Unbuffered RIO Input/Output
 Same interface as Unix read and write
 Especially useful for transferring data on network sockets

 rio_readn returns short count only if it encounters EOF
 Only use it when you know how many bytes to read

 rio_writen never returns a short count
 Calls to rio_readn and rio_writen can be interleaved arbitrarily on

the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

 Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recall: Buffered RIO Input Functions
 Efficiently read text lines and binary data from a file partially

cached in an internal memory buffer

 rio_readlineb reads a text line of up to maxlen bytes from file
fd and stores the line in usrbuf
 Especially useful for reading text lines from network sockets

 Stopping conditions
 maxlen bytes read
 EOF encountered
 Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

 Return: num. bytes read if OK, 0 on EOF, -1 on error

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server: echo function

void echo(int connfd)
{

size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);
 while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
 printf("server received %d bytes\n", (int)n);
 Rio_writen(connfd, buf, n);
 }
}

 The server uses RIO to read and echo text lines until EOF
(end-of-file) condition is encountered.
 EOF condition caused by client calling close(clientfd)

echo.c

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets
rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Client: Main Routine
#include "csapp.h"

int main(int argc, char **argv)
{
 int clientfd;
 char *host, *port, buf[MAXLINE];

rio_t rio;

host = argv[1];
port = argv[2];

clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);

while (Fgets(buf, MAXLINE, stdin) != NULL) {
Rio_writen(clientfd, buf, strlen(buf));
Rio_readlineb(&rio, buf, MAXLINE);
Fputs(buf, stdout);

}
 Close(clientfd);
 exit(0);
} echoclient.c

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets
rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Iterative Echo Server: Main Routine
#include "csapp.h”
void echo(int connfd);

int main(int argc, char **argv)
{
 int listenfd, connfd;
 socklen_t clientlen;
 struct sockaddr_storage clientaddr; /* Enough room for any addr */
 char client_hostname[MAXLINE], client_port[MAXLINE];

 listenfd = Open_listenfd(argv[1]);
 while (1) {
 clientlen = sizeof(struct sockaddr_storage); /* Important! */
 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
 Getnameinfo((SA *) &clientaddr, clientlen,
 client_hostname, MAXLINE, client_port, MAXLINE, 0);
 printf("Connected to (%s, %s)\n", client_hostname, client_port);
 echo(connfd);
 Close(connfd);
 }
 exit(0);
} echoserveri.c

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange
data

2. Start client 1. Start server

Client /
Server
Session

Echo
Server

+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets
rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from client

accept

open_listenfd

open_clientfd

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures
 Generic socket address:
 For address arguments to connect, bind, and accept (next lecture)
 Necessary only because C did not have generic (void *) pointers when

the sockets interface was designed
 For casting convenience, we adopt the Stevens convention:
 typedef struct sockaddr SA;

struct sockaddr {
 uint16_t sa_family; /* Protocol family */
 char sa_data[14]; /* Address data */
};

sa_family

Family Specific

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Socket Address Structures
 Internet (IPv4) specific socket address:
 Must cast (struct sockaddr_in *) to (struct sockaddr *)

for functions that take socket address arguments.

0 0 0 0 0 0 0 0
sa_family

Family Specific

struct sockaddr_in {
 uint16_t sin_family; /* Protocol family (always AF_INET) */
 uint16_t sin_port; /* Port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* Pad to sizeof(struct sockaddr) */
};

sin_port

AF_INET

sin_addr

sin_family

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 getaddrinfo is the modern way to convert string
representations of hostnames, host addresses, ports, and
service names to socket address structures.
 Replaces obsolete gethostbyname and getservbyname funcs.

 Advantages:
 Reentrant (can be safely used by threaded programs).
 Allows us to write portable protocol-independent code

 Works with both IPv4 and IPv6

 Disadvantages
 Somewhat complex
 Fortunately, a small number of usage patterns suffice in most cases.

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getaddrinfo

 Given host and service, getaddrinfo returns result
that points to a linked list of addrinfo structs, each of which
points to a corresponding socket address struct, and which
contains arguments for the sockets interface functions.

 Helper functions:
 freeadderinfo frees the entire linked list.
 gai_strerror converts error code to an error message.

int getaddrinfo(const char *host, /* Hostname or address */
 const char *service, /* Port or service name */
 const struct addrinfo *hints,/* Input parameters */
 struct addrinfo **result); /* Output linked list */

void freeaddrinfo(struct addrinfo *result); /* Free linked list */

const char *gai_strerror(int errcode); /* Return error msg */

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linked List Returned by getaddrinfo

ai_canonname

result

ai_addr
ai_next

addrinfo structs

Socket address structs

NULL
ai_addr
ai_next

NULL
ai_addr
NULL

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

addrinfo Struct

 Each addrinfo struct returned by getaddrinfo contains
arguments that can be passed directly to socket function.

 Also points to a socket address struct that can be passed
directly to connect and bind functions.

(socket, connect, bind to be discussed next lecture)

struct addrinfo {
 int ai_flags; /* Hints argument flags */
 int ai_family; /* First arg to socket function */
 int ai_socktype; /* Second arg to socket function */
 int ai_protocol; /* Third arg to socket function */
 char *ai_canonname; /* Canonical host name */
 size_t ai_addrlen; /* Size of ai_addr struct */
 struct sockaddr *ai_addr; /* Ptr to socket address structure */
 struct addrinfo *ai_next; /* Ptr to next item in linked list */
};

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Host and Service Conversion: getnameinfo

 getnameinfo is the inverse of getaddrinfo, converting a
socket address to the corresponding host and service.
 Replaces obsolete gethostbyaddr and getservbyport funcs.
 Reentrant and protocol independent.

int getnameinfo(const SA *sa, socklen_t salen, /* In: socket addr */
 char *host, size_t hostlen, /* Out: host */
 char *serv, size_t servlen, /* Out: service */
 int flags); /* optional flags */

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example

#include "csapp.h"

int main(int argc, char **argv)
{
 struct addrinfo *p, *listp, hints;
 char buf[MAXLINE];
 int rc, flags;

 /* Get a list of addrinfo records */
 memset(&hints, 0, sizeof(struct addrinfo));
 // hints.ai_family = AF_INET; /* IPv4 only */
 hints.ai_socktype = SOCK_STREAM; /* Connections only */
 if ((rc = getaddrinfo(argv[1], NULL, &hints, &listp)) != 0) {
 fprintf(stderr, "getaddrinfo error: %s\n", gai_strerror(rc));
 exit(1);
 }

hostinfo.c

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conversion Example (cont)

/* Walk the list and display each IP address */
 flags = NI_NUMERICHOST; /* Display address instead of name */

for (p = listp; p; p = p->ai_next) {
Getnameinfo(p->ai_addr, p->ai_addrlen,

buf, MAXLINE, NULL, 0, flags);
printf("%s\n", buf);

}

 /* Clean up */
 Freeaddrinfo(listp);

 exit(0);
} hostinfo.c

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running hostinfo

whaleshark> ./hostinfo localhost
127.0.0.1

whaleshark> ./hostinfo whaleshark.ics.cs.cmu.edu
128.2.210.175

whaleshark> ./hostinfo twitter.com
199.16.156.230
199.16.156.38
199.16.156.102
199.16.156.198

whaleshark> ./hostinfo google.com
172.217.15.110
2607:f8b0:4004:802::200e

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Network Layers
 Global IP Internet
 Sockets Interface

Next time
 Using getaddrinfo for host and service conversion
 Writing clients and servers
 Writing Web servers!

Carnegie Mellon

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Additional slides

Carnegie Mellon

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Basic Internet Components
 Internet backbone:
 collection of routers (nationwide or worldwide) connected by high-speed

point-to-point networks

 Internet Exchange Points (IXP):
 router that connects multiple backbones (often referred to as peers)
 Also called Network Access Points (NAP)

 Regional networks:
 smaller backbones that cover smaller geographical areas

(e.g., cities or states)

 Point of presence (POP):
 machine that is connected to the Internet

 Internet Service Providers (ISPs):
 provide dial-up or direct access to POPs

Carnegie Mellon

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Internet Connection Hierarchy

IXP IXP

Backbone BackboneBackboneBackbone

IXP

POP POP POP

Regional net

POPPOP POP

POPPOP

Small Business

Big BusinessISP

POP POP POP POP

Pgh employee

Cable
modem

DC employee

POP

T3

T1

ISP (for individuals)

POP

DSLT1

Colocation
sites

Private
“peering”

agreements
between

two backbone
companies

often bypass
IXP

Carnegie Mellon

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IP Address Structure
 IP (V4) Address space divided into classes:

 Network ID Written in form w.x.y.z/n
 n = number of bits in host address
 E.g., CMU written as 128.2.0.0/16

 Class B address

 Unrouted (private) IP addresses:
 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

Class A

Class B

Class C

Class D

Class E

0 1 2 3 8 16 24 31
0 Net ID Host ID

Host ID

Host IDNet ID

Net ID

Multicast address

Reserved for experiments

1 0

1 01

1 1 01

1 1 11

Carnegie Mellon

67Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet
 Original Idea
 Every node on Internet would have unique IP address

 Everyone would be able to talk directly to everyone
 No secrecy or authentication

 Messages visible to routers and hosts on same LAN
 Possible to forge source field in packet header

 Shortcomings
 There aren't enough IP addresses available
 Don't want everyone to have access or knowledge of all other hosts
 Security issues mandate secrecy & authentication

Carnegie Mellon

68Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Naming
 Dynamic address assignment
 Most hosts don't need to have known address

 Only those functioning as servers
 DHCP (Dynamic Host Configuration Protocol)

 Local ISP assigns address for temporary use

 Example:
 Laptop at CMU (wired connection)

 IP address 128.2.213.29 (bryant-tp4.cs.cmu.edu)
 Assigned statically

 Laptop at home
 IP address 192.168.1.5
 Only valid within home network

Carnegie Mellon

69Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Evolution of Internet: Firewalls

 Firewalls
 Hides organizations nodes from rest of Internet
 Use local IP addresses within organization
 For external service, provides proxy service

1. Client request: src=10.2.2.2, dest=216.99.99.99
2. Firewall forwards: src=176.3.3.3, dest=216.99.99.99
3. Server responds: src=216.99.99.99, dest=176.3.3.3
4. Firewall forwards response: src=216.99.99.99, dest=10.2.2.2

Corporation X

Firewall

Internet

10.2.2.2
1
4 2

3

176.3.3.3

216.99.99.99

Carnegie Mellon

70Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

71Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

72Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

73Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hardware Organization of a Network Host

main
memory

I/O
bridgeMI

ALU

register file

CPU chip

system bus memory bus

disk
controller

graphics
adapter

USB
controller

mouse keyboard monitor
disk

I/O bus

Expansion slots

network
adapter

network

Carnegie Mellon

74Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Computer Networks
 A network is a hierarchical system of boxes and wires

organized by geographical proximity
 BAN (Body Area Network) spans devices carried / worn on body
 SAN* (System Area Network) spans cluster or machine room

 Switched Ethernet, Quadrics QSW, …
 LAN (Local Area Network) spans a building or campus

 Ethernet is most prominent example
 WAN (Wide Area Network) spans country or world

 Typically high-speed point-to-point phone lines

 An internetwork (internet) is an interconnected set of
networks
 The Global IP Internet (uppercase “I”) is the most famous example

of an internet (lowercase “i”)

 Let’s see how an internet is built from the ground up
* Not to be confused with a Storage Area Network

Carnegie Mellon

75Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lowest Level: Ethernet Segment

 Ethernet segment consists of a collection of hosts connected
by wires (twisted pairs) to a hub

 Spans room or floor in a building
 Operation

 Each Ethernet adapter has a unique 48-bit address (MAC address)
 E.g., 00:16:ea:e3:54:e6

 Hosts send bits to any other host in chunks called frames
 Hub slavishly copies each bit from each port to every other port

 Every host sees every bit
[Note: Hubs are obsolete. Bridges (switches, routers) became cheap enough to replace them]

host host host

hub
100 Mb/s100 Mb/s

port

Carnegie Mellon

76Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: Bridged Ethernet Segment

 Spans building or campus

 Bridges cleverly learn which hosts are reachable from which
ports and then selectively copy frames from port to port

host host host host host

hub hubbridge100 Mb/s 100 Mb/s

host host

hub 100 Mb/s 100 Mb/s

1 Gb/s

host host host

bridge

hosthost

hub

A B

C

X

Y

Carnegie Mellon

77Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conceptual View of LANs
 For simplicity, hubs, bridges, and wires are often shown as a

collection of hosts attached to a single wire:

host host host...

Carnegie Mellon

78Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Next Level: internets
 Multiple incompatible LANs can be physically connected by

specialized computers called routers
 The connected networks are called an internet (lower case)

host host host... host host host...

WAN WAN

LAN 1 and LAN 2 might be completely different, totally incompatible
(e.g., Ethernet, Fibre Channel, 802.11*, T1-links, DSL, …)

router router router
LAN 1 LAN 2

Carnegie Mellon

79Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logical Structure of an internet

 Ad hoc interconnection of networks
 No particular topology
 Vastly different router & link capacities

 Send packets from source to destination by hopping through
networks
 Router forms bridge from one network to another
 Different packets may take different routes

router

router

router
router

router

router

host
host

Carnegie Mellon

80Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Notion of an internet Protocol
 How is it possible to send bits across incompatible LANs

and WANs?

 Solution: protocol software running on each host and
router
 Protocol is a set of rules that governs how hosts and routers should

cooperate when they transfer data from network to network.
 Smooths out the differences between the different networks

Carnegie Mellon

81Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What Does an internet Protocol Do?
 Provides a naming scheme
 An internet protocol defines a uniform format for host addresses
 Each host (and router) is assigned at least one of these internet

addresses that uniquely identifies it

 Provides a delivery mechanism
 An internet protocol defines a standard transfer unit (packet)
 Packet consists of header and payload

 Header: contains info such as packet size, source and destination
addresses

 Payload: contains data bits sent from source host

Carnegie Mellon

82Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

LAN2

Transferring internet Data Via Encapsulation

protocol
software

client

LAN1
adapter

Host ALAN1

data(1)

data PH FH1(4)

data PH FH2(6)

data(8)

data PH FH2 (5)

LAN2 frame

protocol
software

LAN1
adapter

LAN2
adapter

Router
data PH(3) FH1

data PH FH1(2)

internet packet

LAN1 frame

(7) data PH FH2

protocol
software

server

LAN2
adapter

Host B

PH: internet packet header
FH: LAN frame header

Carnegie Mellon

83Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Other Issues
 We are glossing over a number of important questions:
 What if different networks have different maximum frame sizes?

(segmentation)
 How do routers know where to forward frames?
 How are routers informed when the network topology changes?
 What if packets get lost?

 These (and other) questions are addressed by the area of
systems known as computer networking

Carnegie Mellon

84Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global IP Internet (upper case)
 Most famous example of an internet

 Based on the TCP/IP protocol family
 IP (Internet Protocol)

 Provides basic naming scheme and unreliable delivery capability
of packets (datagrams) from host-to-host

 UDP (Unreliable Datagram Protocol)
 Uses IP to provide unreliable datagram delivery from

process-to-process
 TCP (Transmission Control Protocol)

 Uses IP to provide reliable byte streams from process-to-process
over connections

 Accessed via a mix of Unix file I/O and functions from the
sockets interface

Carnegie Mellon

85Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Layer Network Model
The Open Systems Interconnection (OSI) Model

Application

Presentation

Session

Transport

Network

Data link

Physical1

2

3

4

5

6

7

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Data link

Physical

Application

Transport

sockets

	Slide Number 1
	Network Programming: Part I��15-213/14-513/15-513: Introduction to Computer Systems�20th Lecture, November 14, 2023
	Slide Number 3
	Today
	How to Design a Network?
	Solution #1?
	Solution #2
	Layering: A Modular Approach to Networking
	Network Reference Model
	Physical Layer: Establishes the Channel
	Physical Layer: Bandwidth vs. Latency
	Link Layer: Manages the Channel
	Network layer: Scaling up
	Transport Layer: Meaningful endpoints
	Application Layer: Purposeful Communication
	Today
	A Map of 460 Billion Device Connections to the Internet collected by the Carna Botnet
	Slide Number 18
	Global IP Internet
	A Client-Server Transaction
	Hardware and Software Organization �of a Client-Server Internet Application
	A Programmer’s View of the Internet
	Aside: IPv4 and IPv6
	(1) IP Addresses
	Dotted Decimal Notation
	(2) Internet Domain Names
	Slide Number 27
	Domain Naming System (DNS)
	Properties of DNS Mappings
	Properties of DNS Mappings (cont)
	Properties of DNS Mappings (cont)
	(3) Internet Connections
	Well-known Service Names and Ports
	Anatomy of a Connection
	Using Ports to Identify Services
	Quiz Time!
	Today
	Sockets Interface
	Sockets
	Socket Programming Example
	Echo Server/Client Session Example
	Echo�Server�+ Client�Structure
	Echo�Server�+ Client�Structure
	Recall: Unbuffered RIO Input/Output
	Recall: Buffered RIO Input Functions
	Echo Server: echo function
	Echo�Server�+ Client�Structure
	Echo Client: Main Routine
	Echo�Server�+ Client�Structure
	Iterative Echo Server: Main Routine
	Echo�Server�+ Client�Structure
	Socket Address Structures
	Socket Address Structures
	Host and Service Conversion: getaddrinfo
	Host and Service Conversion: getaddrinfo
	Linked List Returned by getaddrinfo
	addrinfo Struct
	Host and Service Conversion: getnameinfo
	Conversion Example
	Conversion Example (cont)
	Running hostinfo
	Today
	Additional slides
	Basic Internet Components
	Internet Connection Hierarchy
	IP Address Structure
	Evolution of Internet
	Evolution of Internet: Naming
	Evolution of Internet: Firewalls
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Hardware Organization of a Network Host
	Computer Networks
	Lowest Level: Ethernet Segment
	Next Level: Bridged Ethernet Segment
	Conceptual View of LANs
	Next Level: internets
	Logical Structure of an internet
	The Notion of an internet Protocol
	What Does an internet Protocol Do?
	Transferring internet Data Via Encapsulation
	Other Issues
	Global IP Internet (upper case)
	A Layer Network Model

