
Carnegie Mellon

15-213/15-513/14-513 Recitation: Bomb Lab

Sep 8, 2023

Carnegie Mellon

Agenda
● Reminders
● OH Etiquette Reminder
● Data Lab: Some last minute tips
● Bomb Lab Overview

○ Introduction and logistics
○ Assembly reminders
○ Quick GDB overview
○ Activity

● Appendix
○ Some more GDB
○ Activity walkthrough

Carnegie Mellon

Reminders

■ Data lab is due next Tuesday (Sep 12)
■ You should be almost done!!

■ Bomb lab is already out and due on Sep 21 (Thursday)
■ Bootcamp 2: GDB and debugging is on Sep 10. Keep

an eye on Piazza for more details.

Carnegie Mellon

OH Etiquette Reminder
• Good description: “On phase 3. I’ve figured out that

we need some string and an int, but I’m not sure how
to figure out more info”

• Bad description: “bomb lab help”
• (We know that already- that’s why you’re at OH.

Write more details!)

• If you are in the queue with a bad description, you
are actually not in the queue

Carnegie Mellon

● Casting between int and long is ok, in either direction
● Be aware of operations and their types!

○ ! returns an int even if the argument is a long
● Good idea to append “L” suffix to every integer constant

○ (1L << 63) is not the same as 1 << 63
Can you think why??

○(!x << 63) is not the same as ((long)!x) << 63

Data Lab: Some last minute tips

Carnegie Mellon

Bomblab!!

Carnegie Mellon

What is Bomb Lab?
•An exercise in reading x86-64 assembly code.
•A chance to practice using GDB (a debugger).
•Why?

• x86 assembly is low level machine code. Useful for
understanding security exploits or tuning
performance.

• GDB can save you days of work in future labs
(Malloc) and can be helpful long after you finish this
class.

Carnegie Mellon

Downloading Your Bomb

•Here are some highlights of the write-up:
• Bombs can only run on the shark machines. They fail if you run
them locally or on another CMU server.

• Each bomb is unique - if you download a second bomb, bad
things can happen! Stick to only one bomb.

• Bombs have six phases which get progressively harder.

• Make sure to read the writeup for more tips and common
mistakes you might make.

Carnegie Mellon

Detonating Your Bomb
•Blowing up your bomb automatically notifies Autolab

• Dr. Evil deducts 0.5 points each time the bomb explodes.
• It’s very easy to prevent explosions using break points in GDB. More
information on that soon.

• Inputting the correct string moves you to the next
phase.

•Don’t tamper with the bomb. Skipping or jumping
between phases detonates the bomb.

•You have to solve the phases in order they are given.
Finishing a phase also notifies Autolab automatically.

Carnegie Mellon

Bomb Hints
•Dr. Evil may be evil, but he isn’t cruel. You may assume
that functions do what their name implies

• i.e. phase_1() is most likely the first phase. printf() is just printf(). If
there is an explode_bomb() function, it would probably help to set a
breakpoint there!

•Use the man pages for library functions.
• Although you can examine the assembly for snprintf(), we assure

you that it’s easier to use the man pages ($ man snprintf) than to
decipher assembly code for system calls.

• Most cryptic function calls you’ll see (e.g. callq … <_exit@plt>) are
also calls to C library functions.

• You can safely ignore the @plt as that refers to dynamic linking.

Carnegie Mellon

• %rbx, %r12, %r13, %r14
• Callee-saved
• Callee must save & restore

• %rbp
• Callee-saved
• Callee must save & restore
• May be used as a frame pointer
• Can mix & match

• %rsp
• Stack pointer, special form of callee save
• Restored to original value upon exit from procedure

%rbx

%rsp

Callee-saved
Temporaries

Special
%rbp

%r12

%r13

%r14

Callee Saved Registers

Carnegie Mellon

Caller Saved Registers
• %rax

• Return value
• Also caller-saved
• Can be modified by procedure

• %rdi, ..., %r9
• Arguments
• Also caller-saved
• Can be modified by procedure

• %r10, %r11
• Caller-saved
• Can be modified by procedure

%rax

%rdx

%rcx

Return
value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Caller-saved
temporaries

Carnegie Mellon

Most Important Registers

• %rax: return value

• %rsp: stack pointer

• %rdi: 1st argument

• %rsi: 2nd argument

• %rdx: 3rd argument

• %rcx: 4th argument

• %r8: 5th argument

• %r9: 6th argument

Carnegie Mellon

Objdump
• $ objdump -d [name of executable] > [any file name]

• Saves the assembly code of the executable into the file.
• Feel free to annotate the assembly in your favorite text
editor.

Carnegie Mellon

sscanf

• man sscanf
• you are allowed to look up documentation of functions
• man pages are your friend :)

• sscanf: string scan format
• parses a string provided as an argument to the function

After this code snippet is run, a = 123 and b = 456

char *example_string = "123, 456";
int a, b;
sscanf(example_string, "%d, %d", &a, &b)

Carnegie Mellon

Assembly Reminders
• Operand Types

• Immediate: $0x400, $-533 → a constant prefixed with $
• Register: %rax, %r12 → value in the register
• Memory: (%rax) → memory at address given by register

• D(Rb, Ri, S) = Mem[Reg[Rb] + S*Reg[Ri] + D]
• D: constant displacement
• Rb: base register (any of the 16 registers)
• Ri: index register (any except for %rsp)
• S: scale (1, 2, 4, or 8)
• $100(%rax, %rsi, 2)

Carnegie Mellon

GDB

GDB is a powerful debugger-- lets you inspect your program as it’s
executing.

• You can open gdb by typing into the shell:
• $ gdb
• Type gdb and then a binary to specify which program to run
• $ gdb <binary>
• This is the notation we’ll be using for the rest of the slides:
• $ cd // The command should be typed in the bash shell
• (gdb) break // The command should be typed in GDB

Carnegie Mellon

Helpful GDB Commands
Disassemble: displays assembly

int squareInt(int x) {
return x * x;

}

** disas != disa in gdb! Be careful with these shortcuts on bomblab

(gdb) disassemble squareInt

Dump of assembler code for function squareInt:
0x000000000040091d <+0>: mov %edi,%eax
0x000000000040091f <+2>: imul %edi,%eax
0x0000000000400922 <+5>: retq
End of assembler dump.

Carnegie Mellon

Helpful GDB Commands

Breakpoints: stops execution of program when it reaches certain point
• break function_name: breaks once you call a specific function

• break *0x…: breaks when you execute instruction at a certain address

• info b: displays information about all breakpoints currently set

• disable #: disables breakpoint with id equal to #

Carnegie Mellon

Helpful GDB Commands

Navigating through assembly:
• stepi: moves one instruction forward, will step into functions

encountered

• nexti: moves one instruction forward, skips over functions called

• c: continues execution until next breakpoint is hit

Carnegie Mellon

Text User Interface (TUI) mode
WARNING – do not use!

Although the TUI mode is very convenient, it has been known to accidentally
set off student’s bombs during Bomblab (but is fine for future labs like

malloc).

The course staff is not responsible if your bomb goes off due to the TUI, and
will not remove the explosion from Autolab.

Carnegie Mellon

What to do
• Don’t understand what a big block of assembly does? GDB
• Need to figure out what’s in a specific memory address? GDB
• Can’t trace how 4 – 6 registers are changing over time? GDB
• Have no idea how to start the assignment? Writeup
• Need to know how to use certain GDB commands? Writeup, Bootcamp

• Also useful: http://csapp.cs.cmu.edu/3e/docs/gdbnotes-x86-64.pdf
• Don’t know what an assembly instruction does? Lecture slides
• Confused about control flow or stack discipline? Lecture slides

http://csapp.cs.cmu.edu/2e/docs/gdbnotes-x86-64.pdf

Carnegie Mellon

Form Pairs

•One student needs a laptop
•SSH into a shark machine and type these commands:
•$ wget http://www.cs.cmu.edu/~213/activities/rec4.tar
•$ tar xvpf rec4.tar
•$ cd rec4
•$ make
•$ gdb act1

Carnegie Mellon

Activity Walkthroughs

Carnegie Mellon

Source code for Activity 1 (Abridged)
#include <stdio.h>

int main(int argc, char** argv) {
 int ret = printf("%s\n", argv[argc-1]);
 return ret; // number of characters printed
}

// Follow along on the handout!

Carnegie Mellon

Activity 1 trace
• (gdb) disassemble main // show the assembly instructions in main
• (gdb) print (char*) [0x4…] // hex code from <+18>

// prints a string

• Find the seemingly random $0x… value in the assembly code
• Q: Does the printed value correspond to anything in the C code?

• (gdb) break main
• (gdb) run 15213
• (gdb) print argv[1] // Q: What does this print out?
• (gdb) continue
• (gdb) quit // exit GDB; agree to kill the running process

Carnegie Mellon

Activity 3
• Activity 3 has a Bomb Lab feel to it. It will print out “good args!” if you
type in the right numbers into the command line. Use GDB to find
what numbers to use, and if you get stuck, look at the handout.

• $ cat act3.c // display the source code of act3
• $ gdb act3

• Q. Which register holds the return value from a function?
• (Hint: Use disassemble in main and look at what register is used right
after the function call to compare)

Carnegie Mellon

Questions?
● Ask on piazza or come to OH for longer questions
● Have a list of things your tried before you come to OH
● Notice how we asked you to read the write-up like 4

times already? That’s because we want you to read
the write-up!

● Good luck agents :) The fate of your computer realms
are in your hands

Carnegie Mellon

Carnegie Mellon

Appendix
•GDB help
•Assembly help
•Text User Interface (TUI)
•Problem walkthroughs

Carnegie Mellon

Basic GDB tips
• Many commands have shortcuts. Dissasemble → disas. Disable → dis

• Do not mix these up! Disable will disable all your breakpoints, which may cause you to blow up your bomb.

• (gdb) print [any valid C expression]
• This can be used to study any kind of local variable or memory location
• Use casting to get the right type (e.g. print *(long *)ptr)

• (gdb) x [some format specifier] [some memory address]
• Examines memory. See the handout for more information. Same as print *(addr), but more convenient.

• (gdb) set disassemble-next-line on
(gdb) show disassemble-next-line

• Shows the next assembly instruction after each step instruction

• (gdb) info registers Shows the values of the registers
• (gdb) info breakpoints Shows all current breakpoints
• (gdb) quit Exits gdb

Carnegie Mellon

Quick Assembly Info
• $rdi holds the first argument to a function call, $rsi holds the second
argument, and $rax will hold the return value of the function call.

• Many functions start with “push %rbx” and end with “pop %rbx”. Long
story short, this is because %rbx is “callee-saved”.

• The stack is often used to hold local variables
• Addresses in the stack are usually in the 0x7fffffff… range

• Know how $rax is related to $eax and $al.
• Most cryptic function calls you’ll see (e.g. callq … <_exit@plt>) are
calls to C library functions. If necessary, use the Unix man pages to
figure out what the functions do.

Carnegie Mellon

Source code for Activity 2 (Abridged)
#include <string.h>

int stc(char*, char*); // Defined in a separate assembly file
int main(int argc, char** argv) {

int ret = stc("15213", argv[argc-1]);
argv[0] = '\0’; // Forces gcc to generate a callq instead of jmp

return ret;
}

// Follow along on the handout!

Carnegie Mellon

Activity 2 trace
• $ gdb act2
• (gdb) break main
• (gdb) disas main
• (gdb) run
• (gdb) print /x $rsi // ‘/x’ means print in hexadecimal
• (gdb) print /x $rdi
• Q. RDI and RSI are registers that pass the first two arguments. Looking at their values,

which is the first argument to main (the ‘argc’ argument)? Why?

• (gdb) disassemble main // note the call to stc at <+17>
• (gdb) break stc // main calls the stc function, so we’ll study that function too
• (gdb) continue
• Q. How could you view the arguments that have been passed to stc?

• Try both of these: “print /x $rdi”, “x /s $rdi”

Carnegie Mellon

Activity 2 trace
• (gdb) run 18213 // gdb will ask if you want to restart; choose yes

• (gdb) continue // Q. Which function is in execution now?

• (gdb) disassemble // note the “=>” on the left side
• (gdb) nexti // step through a single x86 instruction
• (gdb) // just press enter 3 to 4 times

• GDB will repeat your previous instruction. Useful for single-stepping.

• (gdb) disassemble
• Q. Now where are the “=>” characters printed?
• (gdb) quit

Carnegie Mellon

Activity 3 trace
• (gdb) run 5208 10000
• About to run push %rbx
• $rdi = 5208
• $rsi = 10000
• $rbx = [$rbx from somewhere else]
• $rax = [garbage value]

• Stack:
[some old stack items]

• (gdb) nexti

Carnegie Mellon

Activity 3 trace
• About to run mov %rdi, %rbx
• $rdi = 5208
• $rsi = 10000
• $rbx = [$rbx from somewhere else]
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

Carnegie Mellon

Activity 3 trace
• About to run add $0x5, %rbx
• $rdi = 5208
• $rsi = 10000
• $rbx = 5208
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

Carnegie Mellon

Activity 3 trace
• About to run add %rsi, %rbx
• $rdi = 5208
• $rsi = 10000
• $rbx = 5213
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

Carnegie Mellon

Activity 3 trace
• About to run cmp 0x3b6d, %rbx

 & other instructions
• $rdi = 5208
• $rsi = 10000
• $rbx = 15213 (= 0x3b6d)
• $rax = [garbage value]

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti
• (gdb) nexti
• (gdb) nexti

Carnegie Mellon

Activity 3 trace
• About to run pop %rbx
• $rdi = 5208
• $rsi = 10000
• $rbx = 15213 = 0x3b6d
• $rax = 1

• Stack:
[$rbx from somewhere else]
[some old stack items]

• (gdb) nexti

Carnegie Mellon

Activity 3 trace
•About to run retq
•$rdi = 5208
•$rsi = 10000
•$rbx = [$rbx from somewhere else]
•$rax = 1

•Stack:
[some old stack items]

Carnegie Mellon

Activity 4
Use what you have learned to get act4 to print “Finish.”

The source code is available in act4.c if you get stuck.
Also, you can ask TAs for help understanding the
assembly code.

Carnegie Mellon

Activity 4 trace

• $ gdb act4
• (gdb) disassemble main
• Note 3 functions called: strtoq, compute, fwrite
• If you look at the strtoq man page:

• convert a string to a long integer

• Fwrite is probably a print function. Print values
stored into $rdi immediately before calling fwrite

• Why are they put into $rdi?

• Look at addresses at <+60> and <+94>, may be
different when you do this

• (gdb) x /s 0x4942c0
• “Please rerun with a positive number argument\n”

• (gdb) x /s 0x4942f0
• “Argument was not a positive integer

Carnegie Mellon

Activity 4 trace

• (gdb) disassemble compute
• We want it to print “Finish”. Note that the code

jumps to <puts> at <+85>. Print the value stored
into $rdi immediately before <+80>

• (gdb) x /s 0x494290
• ”Finish”

• Want to get to either <+77> or <+80>
• What happens if we get to <+75>?

• Because of <+75>, we know we have to jump to get
to the puts jump at <+85>

Carnegie Mellon

Activity 4 trace

• There are 7 jumps. 3 to <+51>, 2 to <+16>, 1 to
<puts>, and then:

• jmpq *0x494298(,%rdx,8)
• Should jump to address *0x494298 + 8 * $rdx
• Note, may be different when you do this

• (gdb) x /x *0x494298
• 0x400f70 <compute+80>

• The only way this get us to where we want to go is
if $rdx = 0.

Carnegie Mellon

Activity 4 trace

• Working backwards from <+21> with $rdx = 0
• cmp $0x4, %edx

• ja will jump to <+51> if 4 > $edx. Let’s try $edx = 0

• Want $edx = 0. Thus from <+3> want $eax = 0
• lea (%rdi,%rdi,2),%eax

• Does $eax = $rdi + 2 * $rdi = 3 * $rdi
• We want $edx = $eax = 0, so $rdi = 0

• Since the input $rdi = 0, let’s run with 0.
• (gdb) run 0

• What happens?

Carnegie Mellon

Activity 4 trace

• Compare the code to the assembly. Does it
do what you expected?

• What do the jump statements to <+16> and
<+51> correspond to?

• Working backwards like this could be
helpful in bomb lab.

