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Outline

⬛ Logistics

⬛ Process Lifecycle

⬛ Error Handling
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Logistics

⬛ Malloc Final due Tuesday, November 7th

▪ Can use up to 2 grace days!

▪ Style grading mm.c (not checkheap)

▪ Sign up for malloc final code reviews

⬛ Submit on autolab
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Learning Objectives

⬛ Expectations:
▪ Basic understanding of signals & processes

⬛ Goals:
▪ Better understanding of signals & processes
▪ Understand what a shell does and how to interact with it
▪ Understand how to properly handle errors
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Post Mid-Semester Feedback Form

⬛ Please Take 5 minutes to Fill this out:
▪ https://tinyurl.com/3h8y7p6e

⬛ TA Hiring For the Next Semester hasn't been started by 
the Department yet, we shall be announcing so when it 
does. 
▪ All hiring will be done through the CSD portal, not via email. 

https://tinyurl.com/3h8y7p6e
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Shell Lab

⬛ Due date: November 21st

⬛ Simulate a Linux-like shell

⬛ Review the writeup carefully.
▪ Review once before starting, and again when halfway through 

▪ This will save you a lot of style points and a lot of grief!

⬛ Read Chapter 8 in the textbook:
▪ Process lifecycle and signal handling

▪ How race conditions occur, and how to avoid them

▪ Be careful not to use code from the textbook without 
understanding it first.
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Shell Demo
⬛ Process Lifecycle

▪ $ ps x # all processes you own
▪ $ ps ax # all processes on the computer
▪ combine either with ‘l’ or ‘u’ for more information

▪ This reports a snapshot of all the current processes. You can identify 
them by PID

▪ $ ctrl+z sends SIGTSTP and stops the current foreground process
▪ fg/bg to run the most recently stopped process in the 

foreground/background 
▪ $ ./long_binary_with_lots_of_io &

▪ Appending & to the end of a command runs it in the background

⬛ I/O redirection
▪ $ ./hex2raw < exploit.txt > exploit-raw.txt

▪ < to redirect input and > to redirect output to the specified file
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Shell Demo

⬛ Login to shark machine

⬛ wget http://www.cs.cmu.edu/~213/activities/rec10.tar

⬛ tar -xvf rec10.tar

⬛ cd rec10

http://www.cs.cmu.edu/~213/activities/rec10.tar
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Process “Lifecycle”

⬛ fork()
Create a duplicate, a “child”, of the process

⬛ execve()
Replace the running program

⬛ ... [Complete Work]

⬛ exit()
End the running program

⬛ waitpid()
Wait for a child process to terminate
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Processes are separate

⬛ How many lines are printed?

⬛ Will the pid address be different?

⬛ Will the pid be different?

int main(void) {
    pid_t pid;
    pid = fork();
    printf("pid addr: %p - pid: %d\n", 

&pid, pid);
    exit(0);
}
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Processes are separate

⬛ How many lines are printed?

⬛ Will the pid address be different?

⬛ Will the pid be different?

int main(void) {
    pid_t pid;
    pid = fork();
    printf("pid addr: %p - pid: %d\n", 

&pid, pid);
    exit(0);
}

pid addr: 0x7fff2bcc264c - pid: 24750  
pid addr: 0x7fff2bcc264c - pid: 0

The order and the child's PID (printed by the parent) 
may vary, but the address will be the same in the 
parent and child.
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Processes Change

⬛ What does this program print?

int main(void) {
    char *args[3] = {
        "/bin/echo", "Hi 18213!", NULL
    };
    execve(args[0], args, environ);
    printf("Hi 15213!\n");
    exit(0);
} 
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Processes Change

⬛ What does this program print?

int main(void) {
    char *args[3] = {
        "/bin/echo", "Hi 18213!", NULL
    };
    execve(args[0], args, environ);
    printf("Hi 15213!\n");
    exit(0);
} 

Hi 18213!
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Processes Change

⬛ What about this program? What does it print?
⬛ Assume that /bin/blahblah does not exist.

int main(void) {
    char *args[3] = {
        "/bin/blahblah", "Hi 15513!", NULL
    };
    execve(args[0], args, environ);
    printf("Hi 14513!\n");
    exit(0);
} 
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Processes Change

⬛ What about this program? What does it print?
⬛ Assume that /bin/blahblah does not exist.

int main(void) {
    char *args[3] = {
        "/bin/blahblah", "Hi 15513!", NULL
    };
    execve(args[0], args, environ);
    printf("Hi 14513!\n");
    exit(0);
} 

Hi 14513!
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Exit values can convey information

⬛ Two values are printed. What are they?

int main(void) {
    pid_t pid = fork();
    if (pid == 0) { exit(0x213); }
    else {
        int status = 0;
        waitpid(pid, &status, 0);
        printf("0x%x exited with 0x%x\n", pid,
               WEXITSTATUS(status));
    }
    exit(0);
} 
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Exit values can convey information

⬛ Two values are printed. What are they?

int main(void) {
    pid_t pid = fork();
    if (pid == 0) { exit(0x213); }
    else {
        int status = 0;
        waitpid(pid, &status, 0);
        printf("0x%x exited with 0x%x\n", pid,
               WEXITSTATUS(status));
    }
    exit(0);
} 0x7b54 exited with 0x13

WEXITSTATUS(status) will only return 1 
byte of information
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Processes have ancestry

⬛ What's wrong with this code? (assume that fork succeeds)

int main(void) {
    int status = 0, ret = 0;
    pid_t pid = fork();
    if (pid == 0) {
        pid = fork();
        exit(getpid());
    }

    ret = waitpid(-1, &status, 0);
    printf("Process %d exited with %d\n", ret, status);

    ret = waitpid(-1, &status, 0);
    printf("Process %d exited with %d\n", ret, status);
    exit(0);
} 

gcpid = 0

gcpid = 213

cpid = 1234

cpid = 0

exit

exit
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Processes have ancestry

⬛ What's wrong with this code? (assume that fork succeeds)

int main(void) {
    int status = 0, ret = 0;
    pid_t pid = fork();
    if (pid == 0) {
        pid = fork();
        exit(getpid());
    }

    ret = waitpid(-1, &status, 0);
    printf("Process %d exited with %d\n", ret, status);

    ret = waitpid(-1, &status, 0);
    printf("Process %d exited with %d\n", ret, status);
    exit(0);
} 

waitpid will reap only 
children, not grandchildren, 
so the second waitpid call 
will return an error.
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Process Graphs

⬛ How many different sequences can be printed?

int main(void) {
    int status;
    if (fork() == 0) {
        pid_t pid = fork();
        printf("Child: %d\n", getpid());
        if (pid == 0) {
            exit(0);
        }
        // Continues execution...
    }
    pid_t pid = wait(&status);
    printf("Parent: %d\n", pid);
    exit(0);
}
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Process Graphs

⬛ How many different sequences can be printed?
int main(void) {
    int status;
    if (fork() == 0) {
        pid_t pid = fork();
        printf("Child: %d\n", getpid());
        if (pid == 0) {
            exit(0);
        }
        // Continues execution...
    }
    pid_t pid = wait(&status);
    printf("Parent: %d\n", pid);
    exit(0);
} fork

fork print

print exit

wait print exit

wait print exit
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Error in UNIX - return value

⬛ Can syscalls fail?

⬛ How to tell the difference?

int main() {

    int fd = open("213Grades.txt",

                  O_RDWR);

    // Change grades to As or Fs

}
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Error in UNIX - What error?

⬛ Can syscalls fail?

⬛ How to tell the difference?
▪ Returned -1

⬛ So, my fantastic syscalls 
failed.

⬛ How can I tell what went 
wrong?

int main() {

    int fd = open("213Grades.txt",

                  O_RDWR);

    if (fd < 0) {

        fprintf(stderr, "Failed to 

open\n”);

        exit(-1);

    }

    // Change grades to As or Fs

}
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Error in UNIX - What error?

⬛ Can syscalls fail?

⬛ How to tell the difference?
▪ Returned -1

⬛ So, my fantastic syscalls 
failed.

⬛ How can I tell what went 
wrong?
▪ errno is a global variable 

that syscalls store information
in when they fail

▪ strerror turns errno codes
into printable messages

▪ perror (print error) is a handy 
shorthand

int main(void) {

    int fd = open("213Grades.txt",

                  O_RDWR);

    if (fd < 0) {

        fprintf(stderr,

          "Failed to open %s: %s\n",

          "213Grades.txt",

          strerror(errno));

        exit(1);

    }

    // Change grades to As or Fs

}

Print strerror(errno) and the names 
of filenames involved in failing 
system calls when we need to 
communicate it to the user



Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

⬛ How many different lines are printed?

int main(void) {
    char *tgt = "child";
    sigset_t mask, old_mask;
    sigemptyset(&mask);
    sigaddset(&mask, SIGINT);
    sigprocmask(SIG_SETMASK, &mask, &old_mask); // Block
    pid_t pid = fork();
    if (pid == 0) {
        pid = getppid(); // Get parent pid
        tgt = "parent";
    }
    kill(pid, SIGINT);
    sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
    printf("Sent SIGINT to %s:%d\n", tgt, pid);
    exit(0);
}
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Process Graphs

⬛ How many different lines are printed?

int main(void) {
    char *tgt = "child";
    sigset_t mask, old_mask;
    sigemptyset(&mask);
    sigaddset(&mask, SIGINT);
    sigprocmask(SIG_SETMASK, &mask, &old_mask); // Block
    pid_t pid = fork();
    if (pid == 0) {
        pid = getppid(); // Get parent pid
        tgt = "parent";
    }
    kill(pid, SIGINT);
    sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
    printf("Sent SIGINT to %s:%d\n", tgt, pid);
    exit(0);
}

0 or 1 line. The parent and 
child try to terminate each 
other.
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Signals and Handling

⬛ Signals can happen at any time
▪ Control when through blocking signals

⬛ Signals also communicate that events have occurred
▪ What event(s) correspond to each signal?

⬛ Write separate routines for receiving (i.e., signals)
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Counting with signals

⬛ Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
    signal(SIGCHLD, handler);
    for (int i = 0; i < 10; i++) {
        if (fork() == 0) { exit(0); }
    }
    while (counter < 10) {
        mine_bitcoin();
    }
    return 0;
}
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Counting with signals

⬛ Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
    signal(SIGCHLD, handler);
    for (int i = 0; i < 10; i++) {
        if (fork() == 0) { exit(0); }
    }
    while (counter < 10) {
        mine_bitcoin();
    }
    return 0;
} It might not, since 

signals can coalesce.

(Don't use signal, use 
Signal or sigaction 
instead!)

(Don't busy-wait, use 
sigsuspend instead!)
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sigsuspend

int sigsuspend(const sigset_t *mask);
- Suspend current process until a signal is received, you can 

specify which one using a mask

This is an atomic version of:

sigprocmask(SIG_SETMASK, &mask, &prev)
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

- This still doesn’t fix the issue of signals coalescing!
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Proper signal handling

⬛ How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a 

signal handler has executed is not necessarily the same as number 
of times a signal was sent.

▪ We need some other way to count the number of children.
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Proper signal handling

⬛ How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a 

signal handler has executed is not necessarily the same as number 
of times a signal was sent.

▪ We need some other way to count the number of children.

void handler(int sig) {
    pid_t pid;
    while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
        counter++;
    }
}

(This instruction isn't atomic. Why 
won't there be a race condition?)
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Error and signals : Recap

⬛ You can’t expect people to block signals around all error 
handling logic

⬛ Hence, your signal handler shouldn’t interfere with them

⬛ Solution:
▪ Do not make any system call that could set errno

▪ Save and restore errno (store at beginning of handler and restore 
after)

▪ Think about what would work for the case you are using, not one 
rule
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If you get stuck

⬛ Read the writeup!

⬛ Do manual unit testing before runtrace and sdriver!

⬛ Read the writeup!!

⬛ Post private questions on Piazza!

⬛ Think carefully about error conditions.
▪ Read the man pages for each syscall when in doubt.

▪ What errors can each syscall return?

▪ How should the errors be handled?



Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Notes on Examples

⬛ Full source code of all programs is available
▪ TAs may demo specific programs

⬛ In the examples, exit() is called
▪ We do this to be explicit about the program’s behavior

▪ Exit should generally be reserved for terminating on error

⬛ Unless otherwise noted, assume all syscalls succeed
▪ Error checking code is omitted.

▪ Be careful to check errors when writing your own shell!
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Appendix: Example Question: Possible 
outputs?

1  int main( ) { 
2    int val = 2; 
3    printf("%d", 0); 
4    fflush(stdout); 
5
6    if (fork() == 0) {
7      val++; 
8      printf("%d", val); 
9      fflush(stdout); 
10   } 

11   else { 
12     val--; 
13     printf("%d", val); 
14     fflush(stdout); 
15     wait(NULL);
16   }
17
18   val++; 
19   printf("%d", val); 
20   fflush(stdout); 
21    exit(0); 
22 }

⬛ There is no deterministic interleaving of the parent and 
child after the call to fork()
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Appendix: Blocking signals

⬛ Surround blocks of code with calls to sigprocmask.
▪ Use SIG_BLOCK to block signals at the start.

▪ Use SIG_SETMASK to restore the previous signal mask at the end.

⬛ Don't use SIG_UNBLOCK.
▪ We don't want to unblock a signal if it was already blocked.

▪ This allows us to nest this procedure multiple times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL); 
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Appendix: Errno

⬛ Global integer variable used to store an error code.
▪ Its value is set when a system call fails.

▪ Only examine its value when the system call's return code indicates 
that an error has occurred!

▪ Be careful not to call make other system calls before checking the 
value of errno!

⬛ Lets you know why a system call failed.
▪ Use functions like strerror, perror to get error messages.

⬛ Example: assume there is no “foo.txt” in our path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("foo.txt");
// foo.txt: No such file or directory 

#include <errno.h> 
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Appendix: Writing signal handlers

⬛ G1. Call only async-signal-safe functions in your handlers.
▪ Do not call printf, sprintf, malloc, exit! Doing so can cause 

deadlocks, since these functions may require global locks.

▪ We've provided you with sio_printf which you can use instead.

⬛ G2. Save and restore errno on entry and exit.
▪ If not, the signal handler can corrupt code that tries to read errno.

▪ The driver will print a warning if errno is corrupted.

⬛ G3. Temporarily block signals to protect shared data.
▪ This will prevent race conditions when writing to shared data.

⬛ Avoid the use of global variables in tshlab.
▪ They are a source of pernicious race conditions!

▪ You do not need to declare any global variables to complete tshlab.

▪ Use the functions provided by tsh_helper.


