
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213/15-513/14-513 Recitation:
Processes, Signals, Tshlab

November 3rd, 2023
Your TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

⬛ Logistics

⬛ Process Lifecycle

⬛ Error Handling

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics

⬛ Malloc Final due Tuesday, November 7th

▪ Can use up to 2 grace days!

▪ Style grading mm.c (not checkheap)

▪ Sign up for malloc final code reviews

⬛ Submit on autolab

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learning Objectives

⬛ Expectations:
▪ Basic understanding of signals & processes

⬛ Goals:
▪ Better understanding of signals & processes
▪ Understand what a shell does and how to interact with it
▪ Understand how to properly handle errors

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Post Mid-Semester Feedback Form

⬛ Please Take 5 minutes to Fill this out:
▪ https://tinyurl.com/3h8y7p6e

⬛ TA Hiring For the Next Semester hasn't been started by
the Department yet, we shall be announcing so when it
does.
▪ All hiring will be done through the CSD portal, not via email.

https://tinyurl.com/3h8y7p6e

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Lab

⬛ Due date: November 21st

⬛ Simulate a Linux-like shell

⬛ Review the writeup carefully.
▪ Review once before starting, and again when halfway through

▪ This will save you a lot of style points and a lot of grief!

⬛ Read Chapter 8 in the textbook:
▪ Process lifecycle and signal handling

▪ How race conditions occur, and how to avoid them

▪ Be careful not to use code from the textbook without
understanding it first.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Demo
⬛ Process Lifecycle

▪ $ ps x # all processes you own
▪ $ ps ax # all processes on the computer
▪ combine either with ‘l’ or ‘u’ for more information

▪ This reports a snapshot of all the current processes. You can identify
them by PID

▪ $ ctrl+z sends SIGTSTP and stops the current foreground process
▪ fg/bg to run the most recently stopped process in the

foreground/background
▪ $./long_binary_with_lots_of_io &

▪ Appending & to the end of a command runs it in the background

⬛ I/O redirection
▪ $./hex2raw < exploit.txt > exploit-raw.txt

▪ < to redirect input and > to redirect output to the specified file

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Demo

⬛ Login to shark machine

⬛ wget http://www.cs.cmu.edu/~213/activities/rec10.tar

⬛ tar -xvf rec10.tar

⬛ cd rec10

http://www.cs.cmu.edu/~213/activities/rec10.tar

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process “Lifecycle”

⬛ fork()
Create a duplicate, a “child”, of the process

⬛ execve()
Replace the running program

⬛ ... [Complete Work]

⬛ exit()
End the running program

⬛ waitpid()
Wait for a child process to terminate

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

⬛ How many lines are printed?

⬛ Will the pid address be different?

⬛ Will the pid be different?

int main(void) {
 pid_t pid;
 pid = fork();
 printf("pid addr: %p - pid: %d\n",

&pid, pid);
 exit(0);
}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

⬛ How many lines are printed?

⬛ Will the pid address be different?

⬛ Will the pid be different?

int main(void) {
 pid_t pid;
 pid = fork();
 printf("pid addr: %p - pid: %d\n",

&pid, pid);
 exit(0);
}

pid addr: 0x7fff2bcc264c - pid: 24750
pid addr: 0x7fff2bcc264c - pid: 0

The order and the child's PID (printed by the parent)
may vary, but the address will be the same in the
parent and child.

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

⬛ What does this program print?

int main(void) {
 char *args[3] = {
 "/bin/echo", "Hi 18213!", NULL
 };
 execve(args[0], args, environ);
 printf("Hi 15213!\n");
 exit(0);
}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

⬛ What does this program print?

int main(void) {
 char *args[3] = {
 "/bin/echo", "Hi 18213!", NULL
 };
 execve(args[0], args, environ);
 printf("Hi 15213!\n");
 exit(0);
}

Hi 18213!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

⬛ What about this program? What does it print?
⬛ Assume that /bin/blahblah does not exist.

int main(void) {
 char *args[3] = {
 "/bin/blahblah", "Hi 15513!", NULL
 };
 execve(args[0], args, environ);
 printf("Hi 14513!\n");
 exit(0);
}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

⬛ What about this program? What does it print?
⬛ Assume that /bin/blahblah does not exist.

int main(void) {
 char *args[3] = {
 "/bin/blahblah", "Hi 15513!", NULL
 };
 execve(args[0], args, environ);
 printf("Hi 14513!\n");
 exit(0);
}

Hi 14513!

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

⬛ Two values are printed. What are they?

int main(void) {
 pid_t pid = fork();
 if (pid == 0) { exit(0x213); }
 else {
 int status = 0;
 waitpid(pid, &status, 0);
 printf("0x%x exited with 0x%x\n", pid,
 WEXITSTATUS(status));
 }
 exit(0);
}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

⬛ Two values are printed. What are they?

int main(void) {
 pid_t pid = fork();
 if (pid == 0) { exit(0x213); }
 else {
 int status = 0;
 waitpid(pid, &status, 0);
 printf("0x%x exited with 0x%x\n", pid,
 WEXITSTATUS(status));
 }
 exit(0);
} 0x7b54 exited with 0x13

WEXITSTATUS(status) will only return 1
byte of information

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

⬛ What's wrong with this code? (assume that fork succeeds)

int main(void) {
 int status = 0, ret = 0;
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 exit(getpid());
 }

 ret = waitpid(-1, &status, 0);
 printf("Process %d exited with %d\n", ret, status);

 ret = waitpid(-1, &status, 0);
 printf("Process %d exited with %d\n", ret, status);
 exit(0);
}

gcpid = 0

gcpid = 213

cpid = 1234

cpid = 0

exit

exit

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

⬛ What's wrong with this code? (assume that fork succeeds)

int main(void) {
 int status = 0, ret = 0;
 pid_t pid = fork();
 if (pid == 0) {
 pid = fork();
 exit(getpid());
 }

 ret = waitpid(-1, &status, 0);
 printf("Process %d exited with %d\n", ret, status);

 ret = waitpid(-1, &status, 0);
 printf("Process %d exited with %d\n", ret, status);
 exit(0);
}

waitpid will reap only
children, not grandchildren,
so the second waitpid call
will return an error.

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

⬛ How many different sequences can be printed?

int main(void) {
 int status;
 if (fork() == 0) {
 pid_t pid = fork();
 printf("Child: %d\n", getpid());
 if (pid == 0) {
 exit(0);
 }
 // Continues execution...
 }
 pid_t pid = wait(&status);
 printf("Parent: %d\n", pid);
 exit(0);
}

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

⬛ How many different sequences can be printed?
int main(void) {
 int status;
 if (fork() == 0) {
 pid_t pid = fork();
 printf("Child: %d\n", getpid());
 if (pid == 0) {
 exit(0);
 }
 // Continues execution...
 }
 pid_t pid = wait(&status);
 printf("Parent: %d\n", pid);
 exit(0);
} fork

fork print

print exit

wait print exit

wait print exit

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Error in UNIX - return value

⬛ Can syscalls fail?

⬛ How to tell the difference?

int main() {

 int fd = open("213Grades.txt",

 O_RDWR);

 // Change grades to As or Fs

}

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Error in UNIX - What error?

⬛ Can syscalls fail?

⬛ How to tell the difference?
▪ Returned -1

⬛ So, my fantastic syscalls
failed.

⬛ How can I tell what went
wrong?

int main() {

 int fd = open("213Grades.txt",

 O_RDWR);

 if (fd < 0) {

 fprintf(stderr, "Failed to

open\n”);

 exit(-1);

 }

 // Change grades to As or Fs

}

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Error in UNIX - What error?

⬛ Can syscalls fail?

⬛ How to tell the difference?
▪ Returned -1

⬛ So, my fantastic syscalls
failed.

⬛ How can I tell what went
wrong?
▪ errno is a global variable

that syscalls store information
in when they fail

▪ strerror turns errno codes
into printable messages

▪ perror (print error) is a handy
shorthand

int main(void) {

 int fd = open("213Grades.txt",

 O_RDWR);

 if (fd < 0) {

 fprintf(stderr,

 "Failed to open %s: %s\n",

 "213Grades.txt",

 strerror(errno));

 exit(1);

 }

 // Change grades to As or Fs

}

Print strerror(errno) and the names
of filenames involved in failing
system calls when we need to
communicate it to the user

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

⬛ How many different lines are printed?

int main(void) {
 char *tgt = "child";
 sigset_t mask, old_mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigprocmask(SIG_SETMASK, &mask, &old_mask); // Block
 pid_t pid = fork();
 if (pid == 0) {
 pid = getppid(); // Get parent pid
 tgt = "parent";
 }
 kill(pid, SIGINT);
 sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
 printf("Sent SIGINT to %s:%d\n", tgt, pid);
 exit(0);
}

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

⬛ How many different lines are printed?

int main(void) {
 char *tgt = "child";
 sigset_t mask, old_mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigprocmask(SIG_SETMASK, &mask, &old_mask); // Block
 pid_t pid = fork();
 if (pid == 0) {
 pid = getppid(); // Get parent pid
 tgt = "parent";
 }
 kill(pid, SIGINT);
 sigprocmask(SIG_SETMASK, &old_mask, NULL); // Unblock
 printf("Sent SIGINT to %s:%d\n", tgt, pid);
 exit(0);
}

0 or 1 line. The parent and
child try to terminate each
other.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling

⬛ Signals can happen at any time
▪ Control when through blocking signals

⬛ Signals also communicate that events have occurred
▪ What event(s) correspond to each signal?

⬛ Write separate routines for receiving (i.e., signals)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals

⬛ Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 10; i++) {
 if (fork() == 0) { exit(0); }
 }
 while (counter < 10) {
 mine_bitcoin();
 }
 return 0;
}

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals

⬛ Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
 signal(SIGCHLD, handler);
 for (int i = 0; i < 10; i++) {
 if (fork() == 0) { exit(0); }
 }
 while (counter < 10) {
 mine_bitcoin();
 }
 return 0;
} It might not, since

signals can coalesce.

(Don't use signal, use
Signal or sigaction
instead!)

(Don't busy-wait, use
sigsuspend instead!)

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

sigsuspend

int sigsuspend(const sigset_t *mask);
- Suspend current process until a signal is received, you can

specify which one using a mask

This is an atomic version of:

sigprocmask(SIG_SETMASK, &mask, &prev)
pause();
sigprocmask(SIG_SETMASK, &prev, NULL);

- This still doesn’t fix the issue of signals coalescing!

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

⬛ How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a

signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

⬛ How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a

signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

void handler(int sig) {
 pid_t pid;
 while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {
 counter++;
 }
}

(This instruction isn't atomic. Why
won't there be a race condition?)

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Error and signals : Recap

⬛ You can’t expect people to block signals around all error
handling logic

⬛ Hence, your signal handler shouldn’t interfere with them

⬛ Solution:
▪ Do not make any system call that could set errno

▪ Save and restore errno (store at beginning of handler and restore
after)

▪ Think about what would work for the case you are using, not one
rule

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck

⬛ Read the writeup!

⬛ Do manual unit testing before runtrace and sdriver!

⬛ Read the writeup!!

⬛ Post private questions on Piazza!

⬛ Think carefully about error conditions.
▪ Read the man pages for each syscall when in doubt.

▪ What errors can each syscall return?

▪ How should the errors be handled?

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Notes on Examples

⬛ Full source code of all programs is available
▪ TAs may demo specific programs

⬛ In the examples, exit() is called
▪ We do this to be explicit about the program’s behavior

▪ Exit should generally be reserved for terminating on error

⬛ Unless otherwise noted, assume all syscalls succeed
▪ Error checking code is omitted.

▪ Be careful to check errors when writing your own shell!

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Example Question: Possible
outputs?

1 int main() {
2 int val = 2;
3 printf("%d", 0);
4 fflush(stdout);
5
6 if (fork() == 0) {
7 val++;
8 printf("%d", val);
9 fflush(stdout);
10 }

11 else {
12 val--;
13 printf("%d", val);
14 fflush(stdout);
15 wait(NULL);
16 }
17
18 val++;
19 printf("%d", val);
20 fflush(stdout);
21 exit(0);
22 }

⬛ There is no deterministic interleaving of the parent and
child after the call to fork()

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Blocking signals

⬛ Surround blocks of code with calls to sigprocmask.
▪ Use SIG_BLOCK to block signals at the start.

▪ Use SIG_SETMASK to restore the previous signal mask at the end.

⬛ Don't use SIG_UNBLOCK.
▪ We don't want to unblock a signal if it was already blocked.

▪ This allows us to nest this procedure multiple times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Errno

⬛ Global integer variable used to store an error code.
▪ Its value is set when a system call fails.

▪ Only examine its value when the system call's return code indicates
that an error has occurred!

▪ Be careful not to call make other system calls before checking the
value of errno!

⬛ Lets you know why a system call failed.
▪ Use functions like strerror, perror to get error messages.

⬛ Example: assume there is no “foo.txt” in our path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("foo.txt");
// foo.txt: No such file or directory

#include <errno.h>

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Writing signal handlers

⬛ G1. Call only async-signal-safe functions in your handlers.
▪ Do not call printf, sprintf, malloc, exit! Doing so can cause

deadlocks, since these functions may require global locks.

▪ We've provided you with sio_printf which you can use instead.

⬛ G2. Save and restore errno on entry and exit.
▪ If not, the signal handler can corrupt code that tries to read errno.

▪ The driver will print a warning if errno is corrupted.

⬛ G3. Temporarily block signals to protect shared data.
▪ This will prevent race conditions when writing to shared data.

⬛ Avoid the use of global variables in tshlab.
▪ They are a source of pernicious race conditions!

▪ You do not need to declare any global variables to complete tshlab.

▪ Use the functions provided by tsh_helper.

