Carnegie Mellon

Recitation 12: Synchronization

Friday, December 1st
Your TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 1

Carnegie Mellon

Outline

Logistics + SFSLab
Proxylab

Makefiles
Threading
Threads and Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

So you wanna TA for 213

. What qualifications are we looking for?
o Decent class performance, but also critical thinking skills
o Like computer systems + want to help others like systems!
o Have a reasonable ability to gauge your schedule +
responsibilities
o Leadership potential! Take initiative, we love to see it =~

o Ability to tell students:
] “Did you write your heap checker”
] “Run backtrace for me”
] rinse and repeat, it’s mouthwash baby

Apply at https://www.ugrad.cs.cmu.edu/ta/S24

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 3

https://www.ugrad.cs.cmu.edu/ta/S24/

Carnegie Mellon

SFS Lab

B “Shark File System” Lab is a developmental lab assighment

Completely optional! But, totally encouraged!

Online at Autolab, just like every other assignment (GitHub Classroom,
writeup, autograder, etc)

If your SFS score is higher than your Proxy final, we will use your SFS score in
place of Proxy final (Note: this may be difficult to do)

Some of the tooling was set up <24 hours ago, so you may encounter unusual
and hard-to-pin-down errors

Include overall approach, experience, bugs encountered, talk about your plans
for break, etc in the YOUR-FEEDBACK.md file

For assistance, it will be best to speak with Prof. Railing or TA Nathan

m other TAs may help, but itis a new lab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 4

Carnegie Mellon

ProxylLab

B Proxylab final is due Thursday, December 7th. Checkpoint last
submission date is Sunday
= One grace day for final

= Proxy Final may NOT be submitted after the last day of classes per University
policy

= Make sure to submit well in advance of the deadline in case there are errors in
your submission.

= Build errors are a common source of failure

B A proxy is a server process
= |tis expected to be long-lived
= To not leak resources

= To be robust against user input

B Note on CSAPP

= Most CSAPP functions have been removed

= Error check all system calls and exit only on critical failure

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 5

Carnegie Mellon

Proxies and Threads

B Network connections can be handled concurrently
= Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads

= Threaded echo server is a good example of how to do this

B Multi-threaded cache design

= Be careful how you use mutexes. Do not hold locks over network /
file operations (read, write, etc)

= Using semaphores is not permitted

= Be careful how you maintain your object age

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 6

Carnegie Mellon

Join / Detach

B Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 7

Carnegie Mellon

Join / Detach cont.

B Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l) ;
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 8

Carnegie Mellon

Join / Detach cont.

B Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l) ;
if (pthread join(tid, NULL) !'= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach (pthread self())

while (1) ;
}

sleep will not help solve race conditions!!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 9

When should threads detach?

B In general, pthreads will wait to be reaped via
pthread_join.

B When should this behavior be overridden?

B When termination status does not matter.

= pthread_join provides a return value

B When result of thread is not needed.

= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 10

Carnegie Mellon

Threads

B What is the range of value(s) that main will print?

B A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread t tid[2];

«t for(int i = 0; i < 2; i++)
TnE J = :?unt; pthread create(&tid[i], NULL,
) ant ! 5 thread, NULL);

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“$d\n”, count) ;
return 0;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 11

Carnegie Mellon

Synchronization

B Is not cheap

= 100s of cycles just to acquire without waiting

B Is also not that expensive
= Recall your malloc target of 15000kops => ~100 cycles

B May be necessary

= Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 12

Carnegie Mellon

Semaphore Review

B Semaphores are non-negative global integers for
synchronization

B P(s) -- “wait until it’s my turn”
= while(s == 0) { wait(); } s--;
B V(s)--“I'm done”

" St

I

B P/V are implemented to run atomically

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 13

Carnegie Mellon

Other Synchronization

B Mutexes -- similar to semaphores

= Only two states
= ~2 times faster than semaphores

B Reader-Writer Locks

= Allows multiple threads to read at the same time, but only one if it
needs to write

B These were covered in the Synchronization: Advanced
lecture

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 14

Carnegie Mellon

Which synchronization should | use?

B Counting a shared resource, such as shared buffers

= Semaphore

B Exclusive access to one or more variables

= Mutex

B Most operations are reading, rarely writing / modifying
= RWLock

For proxy it’s sufficient to just use mutexes!
(using semaphores is forbidden)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 15

Carnegie Mellon

Threads Revisited

B Which lock type should be used?
B Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread t tid[2];

«t for(int i = 0; i < 2; i++)
TnE J = ;?unt; pthread create(&tid[i], NULL,
) ant ! 5 thread, NULL);

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“$d\n”, count) ;
return 0;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 16

Carnegie Mellon

Associating locks with data

B Given the following key-value store
= Key and value have separate mutexes: klock and vlock

= When an entry is replaced, both locks are acquired.

B Describe why the printf may not be accurate.

typedef struct data t {

int key; pthread mutex lock (klock) ;
size t ;alue- match = search (k) ;
} data_t- , pthread mutex unlock (klock) ;
i 1= —
#define SIZE 10 if (match != -1)
data t space[SIZE]; {
int ;éarch(int k) pthread mutex lock(vlock) ;
{ printf (“$zd\n”, space[match]);
for(int § = 0; 3 < SIZE; j++) pthread mutex unlock (vlock);
if (space[j].key == k) return j; }

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 17

Carnegie Mellon

Locks gone wrong
1. RWLacks are particularly susceptible to which issue:
b. Livelock c. Deadlock

1. |If some code acquires semaphores: S1 then S2, while
other readers go S2 then S1. What, if any, order can a
writer acquire both S1 and S2?

No order is possible without a potential deadlock.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 18

Carnegie Mellon

Proxylab Reminders

B Plan out your implementation

= “Weeks of programming can save you hours of planning”
— Anonymous

= Arbitrarily using mutexes will not fix race conditions
B Read the writeup

B Submit your code (days) early

= Test that the submission will build and run on Autolab

B Final exam is only 1.4285 weeks away!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 19

Appendix

B Calling exit() will terminate all threads

B Calling pthread _join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 20

Carnegie Mellon

Client-to-Client Communication

B Clients don’t have to fetch content from servers
» Clients can communicate with each other
= |n a chat system, a server acts as a facilitator between clients

= Clients could also send messages directly to each other, but this is
more complicated (peer-to-peer networking)

B Running the chat server

= . /chatserver <port>

B Running the client

" telnet <hostname> <port>

B What race conditions could arise from having
communication between multiple clients?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 21

Carnegie Mellon

Appendix: Makefiles

= Makefile: tells program how to compile and link files

List of all header files (for fake cache.c file)
DEPS = csapp.h transpose.h

Rules for building cache

cache: cache.o transpose.o csapp.o

transpose.o: transpose.c $(DEPS)

cache.o: cache.c $ (DEPS)

csapp.o: csapp.c csapp.h

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 22

