
1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The course that gives CMU its “Zip”!

Course Overview

15-213/14-513/15-513:
Introduction to Computer Systems
1st Lecture, Aug 27, 2024 Instructors:

Phil Gibbons (15-213 / 15-513)

Brian Railing (15-213 / 15-513)

Mohamed Farag (14-513)

David Varodayan (14-513)

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Overview

 Introductions

 Big Picture

▪ Course theme

▪ Five realities

▪ How the course fits into the CS/ECE/INI curriculum

 Academic integrity

 Logistics and Policies

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Carnegie Mellon

Instructors

15-213
15-513

David Varodayan

14-513

Phil GibbonsBrian Railing

Mohamed Farag

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Big Picture

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Theme:
(Systems) Knowledge is Power!
 Systems Knowledge

▪ How hardware (processors, memories, disk drives, network infrastructure)
plus software (operating systems, compilers, libraries, network protocols)
combine to support the execution of application programs

▪ How you as a programmer can best use these resources

 Useful outcomes from taking 213/513
▪ Become more effective programmers

▪ Able to find and eliminate bugs efficiently

▪ Able to understand and tune for program performance

▪ Prepare for later “systems” classes in CS & ECE

▪ Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

It’s Important to Understand How Things Work

 Why do I need to know this stuff?

▪ Abstraction is good, but don’t forget reality

 Most CS and CE courses emphasize abstraction; so do we!
▪ Abstract data types

▪ Asymptotic analysis

 But it’s helpful to understand what abstractions build upon and
their limits!

▪ Especially in the presence of bugs

▪ Need to understand details of underlying implementations

▪ Sometimes the abstract interfaces don’t provide the level of control or
performance you need

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

▪ Float’s: Yes!

▪ Int’s:

▪ 40000 * 40000 --> 1600000000

▪ 50000 * 50000 --> ?

 Example 2: Is (x + y) + z = x + (y + z)?
▪ Unsigned & Signed Int’s: Yes!

▪ Float’s:

▪ (1e20 + -1e20) + 3.14 --> 3.14

▪ 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thinking Face …

 1e20 + (-1e20 + 3.14) --> ??

Chat GPT says:
The result of 1e20 + (-1e20 + 3.14) being evaluated as 0 is due to the limitations of floating-point
arithmetic.
In floating-point arithmetic, numbers are represented with a fixed number of bits, which means
there is a limit to the precision and range of numbers that can be accurately represented. This
representation introduces rounding errors and can lead to loss of precision.
When you perform the calculation 1e20 + (-1e20 + 3.14), the subtraction -1e20 + 3.14 evaluates
to 3.14 since the magnitude of -1e20 is much larger than 3.14, so the smaller value is effectively
negligible in terms of precision. Therefore, the expression simplifies to 1e20 + 3.14.
However, when you add 1e20 and 3.14, the magnitude of 1e20 is significantly larger than 3.14. As
a result, the addition of 3.14 does not contribute to the value of 1e20 due to the limited precision
of floating-point arithmetic. Therefore, the resulting sum is effectively equal to 1e20.
In mathematical terms, this cancellation of significant digits is known as "catastrophic
cancellation." It occurs when there is a subtraction of two nearly equal numbers, leading to the
loss of precision in the result.
As a consequence, the total of 1e20 + (-1e20 + 3.14) is approximated as 1e20, which is effectively
zero when compared to the magnitude of 1e20.

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

▪ Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
▪ Due to finiteness of representations

▪ Integer operations satisfy “ring” properties

▪ Commutativity, associativity, distributivity

▪ Floating point operations satisfy “ordering” properties

▪ Monotonicity, values of signs

 Observation

▪ Need to understand which abstractions apply in which contexts

▪ Important issues for compiler writers and serious application programmers

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly

 Chances are, you’ll never write programs in assembly
▪ Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
▪ Behavior of programs in presence of bugs

▪ High-level language models break down

▪ Tuning program performance

▪ Understand optimizations done / not done by the compiler

▪ Understanding sources of program inefficiency

▪ Implementing system software

▪ Compiler has machine code as target

▪ Operating systems must manage process state

▪ Creating / fighting malware

▪ x86 assembly is the language of choice!

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

▪ It must be allocated and managed

▪ Many applications are memory dominated

 Memory referencing bugs especially pernicious
▪ Effects are distant in both time and space

 Memory performance is not uniform

▪ Cache and virtual memory effects can greatly affect program performance

▪ Adapting program to characteristics of memory system can lead to major
speed improvements

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example

▪ Result is system specific

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

typedef struct {

 int a[2];

 double d;

} struct_t;

double fun(int i) {

 volatile struct_t s;

 s.d = 3.14;

 s.a[i] = 1073741824; /* Possibly out of bounds */

 return s.d;

}

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Bug Example
typedef struct {

 int a[2];

 double d;

} struct_t;

fun(0) --> 3.14

fun(1) --> 3.14

fun(2) --> 3.1399998664856

fun(3) --> 2.00000061035156

fun(4) --> 3.14

fun(6) --> Segmentation fault

Location accessed by

fun(i)

Explanation:

Critical State 6

? 5

? 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

struct_t

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

▪ Out of bounds array references

▪ Invalid pointer values

▪ Abuses of malloc/free

 Can lead to nasty bugs

▪ Whether or not bug has any effect depends on system and compiler

▪ Action at a distance

▪ Corrupted object logically unrelated to one being accessed

▪ Effect of bug may be first observed long after it is generated

 How can I deal with this?
▪ Program in Java, Ruby, Python, ML, …

▪ Understand what possible interactions may occur

▪ Use or develop tools to detect referencing errors (e.g. Valgrind)

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

▪ Easily see 10:1 performance range depending on how code written

▪ Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
▪ How programs compiled and executed

▪ How to measure program performance and identify bottlenecks

▪ How to improve performance without destroying code modularity and
generality

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

▪ Including how step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

81.8ms4.3ms
2.0 GHz Intel Core i7 Haswell

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Learn why on Sept 24: Memory Hierarchy

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Stride (x8 bytes)

copyij

copyji

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

▪ I/O system critical to program reliability and performance

 They communicate with each other over networks
▪ Many system-level issues arise in presence of network

▪ Concurrent operations by autonomous processes

▪ Coping with unreliable media

▪ Cross platform compatibility

▪ Complex performance issues

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

▪ Computer Architecture

▪ Design pipelined processor in Verilog

▪ Operating Systems

▪ Implement sample portions of operating system

▪ Compilers

▪ Write compiler for simple language

▪ Networking

▪ Implement and simulate network protocols

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

▪ By knowing more about the underlying system, you can be more effective
as a programmer

▪ Enable you to

▪ Write programs that are more reliable and efficient

▪ Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

▪ Cover material in this course that you won’t see elsewhere

▪ Not just a course for dedicated hackers

▪ We bring out the hidden hacker in everyone!

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Role within CS/ECE Curriculum CS 122
Imperative
 Programming

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS Systems
• 15-319 Cloud Computing
• 15-330 Computer Security
• 15-346 Computer Architecture
• 15-410 Operating Systems
• 15-411 Compiler Design
• 15-415 Database Applications
• 15-418 Parallel Computing
• 15-440 Distributed Systems
• 15-441 Computer Networks
• 15-445 Database Systems

ECE Systems
• 18-330 Computer Security
• 18-349 Intro to Embedded Systems
• 18-441 Computer Networks
• 18-447 Computer Architecture
• 18-452 Wireless Networking
• 18-451 Cyberphysical Systems

CS Graphics
• 15-462 Computer Graphics
• 15-463 Comp. Photography

213/513

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Academic Integrity
Please pay close attention, especially
if this is your first semester at CMU

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

 Unauthorized use of information

▪ Borrowing code: by copying, retyping, looking at a file

▪ Describing: verbal description of code from one person to another

▪ Even if you just describe/discuss how to put together CS:APP code
snippets to solve the problem

▪ Searching the Web for solutions, discussions, tutorials, blogs, other
universities’ 213 instances,… in English or any other language

▪ Copying code from a previous course or online solution

▪ Reusing your code from a previous semester (here or elsewhere)

▪ If you take the course this semester, all work has to be done this
semester (unless you have special permission from the instructors)

▪ Using AI to generate your code (e.g., GitHub CoPilot)

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description (cont.)

 Unauthorized supplying of information

▪ Providing copy: Giving a copy of a file to someone

▪ Providing access:

▪ Putting material in unprotected directory

▪ Putting material in unprotected code repository (e.g., Github)

– Or, letting protections expire

▪ Applies to this term and the future

▪ There is no statute of limitations for academic integrity violations

 Collaborations beyond high-level, strategic advice
▪ Anything more than block diagram or a few words

▪ Code / pseudo-code is NOT high level

▪ Coaching, arranging blocks of allowed code is NOT high level

▪ Code-level debugging is NOT high level

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Description

 What is NOT cheating?

▪ Explaining how to use systems or tools

▪ Helping others with high-level design issues
High means VERY high

▪ Using code supplied by us

▪ Using code from the CS:APP web site

▪ Using books from the library, Unix manpages, other published material

▪ Except the “Solutions Manual for CS:APP”

▪ Using general online references

▪ OK: The GNU C Library Manual, Beej’s Guide to C, cplusplus.com

▪ Not OK: searching for “213 malloc solution”

https://www.gnu.org/software/libc/manual/html_node/index.html
https://beej.us/guide/bgc/
https://cplusplus.com/

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating/Plagiarism: Attribution

 If you copy code (that you’re allowed to copy),
you MUST credit the author

▪ Starter code: No

▪ Any other allowed code (course, CS:APP, etc): Yes

▪ Indicate source, beginning, and end

 Here’s what it should look like:

/** Hash a 4-byte integer.
 * This is the “6 shifts” function from
 * https://burtleburtle.net/bob/hash/integer.html
 * (second from the top on that page)
 */
uint32_t hash(uint32_t a)
{
 a = (a+0x7ed55d16) + (a<<12);
 // ...
}

https://burtleburtle.net/bob/hash/integer.html

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating: Consequences
 Penalty for cheating:

▪ Best case: -100% for assignment

▪ You would be better off to turn in nothing
▪ Worst case: Removal from course with failing grade

▪ This is the default

▪ University-level involvement (from notification to serious things)

▪ Loss of respect by you, the instructors and your colleagues

▪ If you do cheat – come clean asap!

 Detection of cheating:
▪ We have sophisticated tools for detecting code plagiarism

▪ In Fall 2015, 20 students were caught cheating and failed the course.

▪ Some were expelled from the University

▪ In January 2016, 11 students were penalized for cheating violations that occurred as far back as Spring
2014.

▪ In May 2019, we gave an AIV to a student who took the course in Fall 2018 for unauthorized coaching of a
Spring 2019 student. His grade was changed retroactively.

 Don’t do it!
▪ Manage your time carefully

▪ Ask the staff for help when you get stuck

▪ We will help you! We will give you extensions! We want you to succeed.

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Cheating Notes

 We have written over 100 letters for cheating cases

▪ Don’t add to this total

▪ Some have been for years earlier

 Your work is sophisticated enough that there are many
different solutions

▪ Things that look the same are very suspicious

▪ If you do your own work and commit regularly, your work is unique

 We use PhD-level research to detect similarities

▪ Inputs include: multiple tools, online searches, archives of online solutions
such as wdxtub, past semester submissions

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Some Concrete Examples:
 This is Cheating:

▪ Searching the internet with the phrase 15-213, 15213, 213, 18213, 513,
malloclab, etc.

▪ That’s right, just entering it in a search engine

▪ Looking at someone’s code on the computer next to yours

▪ Giving your code to someone else, now or in the future

▪ Posting your code in a publicly accessible place on the Internet, now or in
the future

▪ Hacking the course infrastructure

 This is OK (and encouraged):

▪ Googling a man page for fputs

▪ Asking a friend for help with gdb

▪ Asking a TA or course instructor for help, showing them your code, …

▪ Looking in the textbook for a code example

▪ Talking about a (high-level) approach to the lab with a classmate

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

AI Tools (ChatGPT, Co-Pilot, etc)

 AI Tools may not be used to get partial or complete solutions to any portion of
any assignment, or to get explanations or instructions for completing any
assignment, e.g., you may not ask an AI Tool:

▪ what special cases should be considered for malloc lab’s coalesce, or

▪ what steps are required to allocate a miniblock, or

▪ which accesses are cache hits vs misses for cache configuration and trace given in an assignment.

 You may not ask AI Tools to generate anything toward any assignment,
e.g. code, steps, special cases, answers, etc.

 AI Tools may be used to get help with understanding APIs, libraries, frameworks,
provided code, error/warning/info messages, and similar, as well as tools taught
in the course, such as GDB, and valgrind, and lecture material.

▪ Being misled by an AI Tool is not an excuse: You are wholly responsible for your work.

 Further details in the 213 Academic Integrity page

https://www.cs.cmu.edu/~213/academicintegrity.html

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

 Fred is desperate. He can’t get his code to work and the deadline is drawing
near. In panic and frustration, he searches the web and finds a solution
posted by a student at U. Oklahoma on Github. He carefully strips out the
comments and inserts his own. He changes the names of the variables and
functions. Phew! Got it done!

 The course staff run checking tools that compare all submitted solutions to
the solutions from this and other semesters, along with ones that are on the
Web.

▪ Remember: We are as good at web searching as you are

 Meanwhile, Fred has had an uneasy feeling: Will I get away with it? Why
does my conscience bother me?

 Fred gets email from an instructor: “Please see me tomorrow at 9:30 am.”

▪ Fred does not sleep well that night

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How it Feels: Student and Instructor

 The instructor feels frustrated. His job is to help students learn, not to be
police. Every hour he spends looking at code for cheating is time that he
cannot spend providing help to students. But, these cases can’t be
overlooked

 At the meeting:

▪ Instructor: “Explain why your code looks so much like the code on Github.”

▪ Fred: “Gee, I don’t know. I guess all solutions look pretty much alike.”

▪ Instructor: “I don’t believe you. I am going to file an academic integrity violation.”

▪ Fred will have the right to appeal, but the instructor does not need him to admit
his guilt in order to penalize him.

 Consequences

▪ Fred may (most likely) will be given a failing grade for the course

▪ Fred will be reported to the university

▪ A second AIV will lead to a disciplinary hearing

▪ Fred will go through the rest of his life carrying a burden of shame

▪ The instructor would have rather spent that time teaching Fred in office hours!

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Why It’s a Big Deal

 This material is best learned by doing

▪ Even though that can, at times, be difficult and frustrating

▪ Starting with a copy of a program and then tweaking it is very different
from writing from scratch

▪ Planning, designing, organizing a program are important skills

 We are the gateway to other system courses

▪ Want to make sure everyone completing the course has mastered the
material

 Industry appreciates the value of this course
▪ We want to make sure anyone claiming to have taken the course is

prepared for the real world

 Working in teams and collaboration is an important skill
▪ But only if team members have solid foundations

▪ This course is about foundations, not teamwork

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Version Control: Your Good Friend
 Starting with cache lab, labs will be distributed via

GitHub Classroom

 Must be used by all students

 Students must commit early and often

 If a student is accused of cheating (plagiarism), we will consult
the GIT server and look for a reasonable commit history

 Missing GIT history will count against you

 Please make sure you have one!

 Note: Posting your work for this class in a public Git repo (on your
personal GitHub account, for instance) is considered an AIV
▪ You’re making it too easy for other people to copy from you

▪ Use a private repo shared with specific people if you want to e.g. show your
work to a potential employer

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Version Control: Quick Tips

 Always commit your changes and only your changes

 Do not do:
▪ git add .

▪ This adds / commits all files that git is either not tracking or have
changed

▪ git commit –a

▪ This commits all files that have changed, which might include accidental
edits

 Do:

▪ git commit <list of files>

▪ This commits a specific list of files (usually one) and allows you to write
a multi-line commit message

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

How to Avoid AIVs

 Start early

 Don’t rely on marathon programming sessions

▪ Your brain works better in small bursts of activity

▪ Ideas / solutions will come to mind while you’re doing other things

 Plan for stumbling blocks
▪ Assignment is harder than you expected

▪ Code doesn’t work

▪ Bugs hard to track down

▪ Life gets in the way

▪ Minor health issues

▪ Unanticipated events

 Reach out to the faculty! We will help you, give extensions, etc.
Our goal is for you to learn & succeed, not be cops.

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Logistics

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Education research in this course

 We (faculty) use this course as a basis for formal research
studies into how we can teach more effectively.

 Nothing we do for research purposes will affect your grade.

 You have the right to request to be excluded from the studies.

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Primary Textbook

 Randal E. Bryant and David R. O’Hallaron,

▪ Computer Systems: A Programmer’s Perspective, Third Edition (CS:APP3e),
Pearson, 2016

▪ https://csapp.cs.cmu.edu

▪ This book really matters for the course!

▪ How to solve labs

▪ Practice problems typical of exam problems

▪ Electronic editions available (Don’t get paperback/international version!)

▪ On reserve in Sorrells Library

 Note: All textbooks have errors
▪ Don’t panic if you see something that seems wrong

▪ Come talk to us about it if you can’t make it make sense

https://csapp.cs.cmu.edu/

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recommended reading

 Brian Kernighan and Dennis Ritchie,

▪ The C Programming Language, Second Edition, Prentice Hall, 1988

▪ Everyone calls this book “K&R”

▪ Guide to C by the designers of the language

▪ Well-written, concise

▪ A little dated

▪ Doesn’t cover additions to C since 1988 (that’s 35+ years ago…)

▪ Casual about issues we consider serious problems now

▪ On reserve in Sorrells Library

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

If you want more books about C

 C for Programmers with an introduction to C11
▪ Paul and Harvey Deitel
▪ Opposite of K&R: modern, verbose

▪ Lots of worked-out examples

▪ Ugly code style (compare readability to K&R)

 21st Century C
▪ Ben Klemens

▪ Supplement to full C textbooks: goes into the corners of the language

▪ Opinionated
▪ First half is about how to build C programs in the Unix environment

▪ So, if you want to understand the Makefiles we give you…

 Learn C the Hard Way
▪ Zed A. Shaw
▪ Extremely opinionated

▪ Also has lots of worked-out examples

▪ Only book we can find that takes “undefined behavior” seriously enough

 These books are not on reserve
▪ The library may still have them

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Course Components
 Lectures

▪ Higher level concepts

▪ In-class quizzes (except 15-513) could tilt you to a higher grade if borderline

▪ Some lectures have in-class activities

 Labs (9)
▪ 1-2+ weeks each

▪ Provide in-depth understanding of an aspect of systems

▪ Programming and measurement

 Written Assignments (best 10 of 12)
▪ Reinforce concepts

▪ You earn 1/3 of score by grading your peers’ work according to our rubric

▪ Due Wednesdays at 11:59pm ET with peer grades due the next Wednesday

 Final Exam
▪ Test your understanding of concepts & mathematical principles

▪ Covers content from the whole semester

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Programs and Data

 Topics

▪ Bit operations, arithmetic, assembly language programs

▪ Representation of C control and data structures

▪ Includes aspects of architecture and compilers

 Assignments

▪ L0 (C programming Lab): Test/refresh your C programming abilities

▪ L1 (datalab): Manipulating bits

▪ L2 (bomblab): Defusing a binary bomb

▪ L3 (attacklab): The basics of code injection attacks

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

The Memory Hierarchy

 Topics

▪ Memory technology, memory hierarchy, caches, disks, locality

▪ Includes aspects of architecture and OS

 Assignments

▪ L4 (cachelab): Building a cache simulator and optimizing for locality.

▪ Learn how to exploit locality in your programs.

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Virtual Memory

 Topics

▪ Virtual memory, address translation, dynamic storage allocation

▪ Includes aspects of architecture and OS

 Assignments
▪ L5 (malloclab): Writing your own malloc package

▪ Get a real feel for systems-level programming

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exceptional Control Flow

 Topics

▪ Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

▪ Includes aspects of compilers, OS, and architecture

 Assignments

▪ L6 (tshlab): Writing your own Unix shell.

▪ A first introduction to concurrency

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Networking, and Concurrency

 Topics

▪ High level and low-level I/O, network programming

▪ Internet services, Web servers

▪ concurrency, concurrent server design, threads

▪ I/O multiplexing with select

▪ Includes aspects of networking, OS, and architecture

 Assignments
▪ L7 (proxylab): Writing your own Web proxy

▪ Learn network programming and more about concurrency and
synchronization.

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Parallelism and Files

 Topics

▪ Low-level I/O

▪ Parallelism and synchronization

▪ Includes aspects of OS and architecture

 Assignments

▪ L8 (sfslab): Extend a basic file system

▪ Learn about parallelism and performance

▪ Understand further how files / file systems work

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

▪ Set a reasonable threshold for full credit

▪ Post intermediate results (anonymized) on Autolab scoreboard for glory!

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Lab0: C Programming

 You can start this afternoon: lab released on Autolab at 2 pm

▪ If you are on waitlist, see 213 schedule page for Lab0

 It should all be review:
▪ Basic C control flow, syntax, etc.

▪ Explicit memory management, as required in C.

▪ Creating and manipulating pointer-based data structures.

▪ Implementing robust code that operates correctly with invalid arguments,
including NULL pointers.

▪ Creating rules in a Makefile

 If this lab takes you more than 10 hours, please think hard
about taking the course.

http://www.cs.cmu.edu/~213/schedule.html

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Lab

 Work groups

▪ You must work alone on all lab assignments

 Handins

▪ Labs due at 11:59pm ET

▪ Electronic handins using Autolab (no exceptions!)

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Timeliness
 Grace days

▪ 5 grace days for the semester

▪ Limit of 0, 1, or 2 grace days per lab used automatically

▪ Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Lateness penalties

▪ Once grace day(s) used up, get penalized 15% per day

▪ No handins later than 3 days after due date

 Catastrophic events
▪ Major illness, death in family, …

▪ Fill in form (link on Piazza) to request more time

▪ Formulate a plan (with your academic advisor) to get back on track

 Advice
▪ Once you start running late, it’s really hard to catch up

▪ Try to save your grace days until the last few labs

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster

▪ The “shark machines”

▪ linux> ssh shark.ics.cs.cmu.edu

▪ Servers donated by Intel for 213/513

▪ Login using your Andrew ID and password

▪ Storage shared with general-purpose Andrew clusters (AFS)

▪ Please don’t use the general-purpose Andrew clusters for 213 work

▪ They get overloaded

▪ They don’t have the right compilers

▪ You can try to do the labs on your local machine

▪ But it probably doesn’t have the right compilers either

▪ make submit definitely won’t work

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab (https://autolab.andrew.cmu.edu)

 Labs are provided by the CMU Autolab system

▪ Project page: http://autolab.andrew.cmu.edu

▪ Developed by CMU faculty and students

▪ Key ideas: Autograding and Scoreboards

▪ Autograding: Providing you with instant feedback.

▪ Scoreboards: Real-time, rank-ordered, and anonymous summary.

▪ Used by over 3,000 students each semester

 With Autolab you can use your Web browser to:

▪ Download the lab materials

▪ Handin your code for autograding by the Autolab server

▪ View the class scoreboard

▪ View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

▪ View the TA annotations of your code for Style points.

http://autolab.cs.cmu.edu/

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Your grade on autolab is your grade for the lab

 Even if you got a better grade on the sharks
▪ Autolab does more stringent tests for some labs

▪ Screenshots can be faked

▪ File timestamps can be faked

 Even if you got a better grade earlier
▪ Don’t submit borderline code over and over

▪ All labs are calibrated so it’s possible to get 100% consistently

 One more reason to do the labs early!

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Autolab accounts

 Students enrolled on Tues, August 27 have Autolab accounts

 You must be enrolled to get an account

▪ Autolab is not tied into the Hub’s rosters

▪ We will update the autolab accounts once a day, so check back in 24 hours.

 For those who are waiting to add in, request an extension after
you have been added, if needed

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Recitations

 Begin Friday Aug 30

 You must go to the recitation the registrar put you in

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Class Web page:

▪ http://www.cs.cmu.edu/~213 for 15-213/15-513/14-513

▪ Complete schedule of lectures, exams, and assignments

▪ Copies of lectures, assignments, exams, solutions

▪ FAQ

 Piazza
▪ Best place for questions about assignments

▪ We will fill the FAQ and Piazza with answers to common questions

▪ Be careful about public posts: Remember the AIV policy

 Canvas
▪ In-class quizzes

▪ Written assignments

http://www.cs.cmu.edu/~213

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie MellonCarnegie Mellon

Getting Help

 Email

▪ Send email to individual instructors or TAs only to schedule appointments

 Office hours
▪ TAs: See next slide

▪ Instructors: See course home page

 Walk-in Tutoring
▪ Details on class webpage

 1:1 Appointments

▪ You can schedule 1:1 appointments with any of the teaching staff

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Office Hours

 TA office hours begin next week (week of Sept 2)

 Both in-person and remote (Zoom) will be offered

▪ Only one or the other, at any particular time

 Schedule will be posted on Piazza

 TAs can spend only 10 minutes per student
▪ Come prepared – have a specific problem you want to ask about

▪ Need more time? Schedule a 1:1 session, or come to faculty office hours

 Faculty office hours also begin Sept 2
▪ Schedule will also be posted on Ed and the course website

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Policies: Grading

 Final Exam (30%)

 Labs (50%): weighted according to effort

 Written Assignments (20%): drop lowest 2 out of 12
▪ Each out of 30 points: 10 for doing the assignment, 10 for completing 3 peer

reviews, max (up to 10) of your peers’ scores
▪ Note: There are 10 regular writtens + 1 “midterm” written that counts double

 In-lecture quizzes and activities are NOT graded
▪ We may look at whether you did the quizzes, for curving only

 Final grades based on a straight scale (90/80/70/60) with a small
amount of curving
▪ Only upward
▪ No +/- grades are given (university policy)

63Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Bootcamps

 Bootcamp #1 (Sun Sept 1 - check Piazza for time and zoom link)

▪ Linux, Command Line, Git

 Bootcamp #2 (Sun Sept 8)
▪ Debugging Fundamentals & GDB

 Bootcamp #3 (Sun Sept 22)
▪ GCC & Build Automation (makefiles)

 Bootcamp #4 (Sun Sept 29)

▪ C Programming

 Bootcamp #5 (Sun Oct 27)
▪ Post-checkpoint Malloc

 Bootcamp #6 (Sun Dec 8)
▪ Exam Review

 Listed on schedule page

https://www.cs.cmu.edu/~213/schedule.html

64Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Waitlist questions

 15-213 / 15-513 (Amy Weis <alweis@andrew.cmu.edu>)

▪ Waitlist priority is always: are you graduating or does not taking it now
directly impact your graduation

 14-513: INI Enrollment (ini-academic@andrew.cmu.edu)

 Please don’t contact the instructors with waitlist questions.

65Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Managing this course

 Time management is key

▪ Start early.

▪ Office hours are basically empty the first few days an assignment is out.

▪ If you feel pressured, do appropriate risk analysis

 Read the Textbook!

 Come to lecture

 Go to recitation

66Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Welcome
and Enjoy!

	Slide 1
	Slide 2: Overview
	Slide 3: Instructors
	Slide 4: The Big Picture
	Slide 5: Course Theme: (Systems) Knowledge is Power!
	Slide 6: It’s Important to Understand How Things Work
	Slide 7: Great Reality #1: Ints are not Integers, Floats are not Reals
	Slide 8: Thinking Face …
	Slide 9: Computer Arithmetic
	Slide 10: Great Reality #2: You’ve Got to Know Assembly
	Slide 11: Great Reality #3: Memory Matters Random Access Memory Is an Unphysical Abstraction
	Slide 12: Memory Referencing Bug Example
	Slide 13: Memory Referencing Bug Example
	Slide 14: Memory Referencing Errors
	Slide 15: Great Reality #4: There’s more to performance than asymptotic complexity
	Slide 16: Memory System Performance Example
	Slide 17: Learn why on Sept 24: Memory Hierarchy
	Slide 18: Great Reality #5: Computers do more than execute programs
	Slide 19: Course Perspective
	Slide 20: Course Perspective (Cont.)
	Slide 21: Role within CS/ECE Curriculum
	Slide 23: Academic Integrity
	Slide 24: Cheating/Plagiarism: Description
	Slide 25: Cheating/Plagiarism: Description (cont.)
	Slide 26: Cheating/Plagiarism: Description
	Slide 27: Cheating/Plagiarism: Attribution
	Slide 28: Cheating: Consequences
	Slide 29: Cheating Notes
	Slide 30: Some Concrete Examples:
	Slide 31: AI Tools (ChatGPT, Co-Pilot, etc)
	Slide 32: How it Feels: Student and Instructor
	Slide 33: How it Feels: Student and Instructor
	Slide 34: Why It’s a Big Deal
	Slide 35: Version Control: Your Good Friend
	Slide 36: Version Control: Quick Tips
	Slide 37: How to Avoid AIVs
	Slide 38: Logistics
	Slide 39: Education research in this course
	Slide 40: Primary Textbook
	Slide 41: Recommended reading
	Slide 42: If you want more books about C
	Slide 43: Course Components
	Slide 44: Programs and Data
	Slide 45: The Memory Hierarchy
	Slide 46: Virtual Memory
	Slide 47: Exceptional Control Flow
	Slide 48: Networking, and Concurrency
	Slide 49: Parallelism and Files
	Slide 50: Lab Rationale
	Slide 51: Lab0: C Programming
	Slide 52: Policies: Lab
	Slide 53: Timeliness
	Slide 54: Facilities
	Slide 55: Autolab (https://autolab.andrew.cmu.edu)
	Slide 56: Your grade on autolab is your grade for the lab
	Slide 57: Autolab accounts
	Slide 58: Recitations
	Slide 59: Getting Help
	Slide 60: Getting Help
	Slide 61: Office Hours
	Slide 62: Policies: Grading
	Slide 63: Bootcamps
	Slide 64: Waitlist questions
	Slide 65: Managing this course
	Slide 66: Welcome and Enjoy!

