
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

15-213/15-513: Introduction to Computer Systems
23rd Lecture, November 21, 2024

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Review: Threads and Concurrency
 Sharing and Data Races CSAPP 12.4, 12.5.1
 Fixing Data Races
 Mutexes
 Semaphores CSAPP 12.5.2, 12.5.3
 Atomic memory operations

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data
Read-only code/dataPC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

 Process = thread + (code, data, and kernel context)

Shared libraries

Run-time heap

0

Read/write dataThread context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
 Multiple threads can be associated with a process
 Each thread has its own logical control flow
 Each thread shares the same code, data, and kernel context
 Each thread has its own stack for local variables

 but not protected from other threads
 Each thread has its own thread id (TID)

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1
(main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2
 (peer thread)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Deadlock vs. Livelock vs. Starvation
 Deadlock
 Cycle of wait-for dependencies
 No thread can advance due to the cycle

 Livelock
 Threads are advancing but not making progress

towards their goal

 Starvation
 Some threads make no progress while others do

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs
 Question: Which variables in a threaded C program are

shared?
 The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Conceptual
 Multiple threads run within the context of a single process
 Each thread has its own separate thread context

 Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
 Code, data, heap, and shared library segments of the process virtual address space
 Open files and installed handlers

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1
(private) Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2
(private)

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model: Actual
 Separation of data is not strictly enforced:
 Register values are truly separate and protected, but…
 Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1
(private)

Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2
(private)

Virtual Address Space

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Three Ways to Pass Thread Arg
 Malloc/free
 Producer malloc’s space, passes pointer to pthread_create
 Consumer dereferences pointer, frees space
 Always works; necessary for passing large amounts of data

 Cast of int
 Producer casts an int/long to void*, passes to pthread_create
 Consumer casts void* argument back to int/long
 Works for small amounts of data (one number)

 INCORRECT: Pointer to stack slot
 Producer passes address to producer’s stack in pthread_create
 Consumer dereferences pointer
 Why is this unsafe?

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {
 long i;
 pthread_t tids[N];

 for (i = 0; i < N; i++)
 Pthread_create(&tids[i],
 NULL,
 thread,
 &hist[i]);
 for (i = 0; i < N; i++)
 Pthread_join(tids[i], NULL);
}

void *thread(void *vargp)
{
 *(int *)vargp += 1;
 return NULL;
}

Passing an argument to a thread (1/4) – OK

• Each thread receives a
unique pointer

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {
 long i;
 pthread_t tids[N];

 for (i = 0; i < N; i++)
 Pthread_create(&tids[i],
 NULL,
 thread,
 (void *)i);
 for (i = 0; i < N; i++)
 Pthread_join(tids[i], NULL);
}

void *thread(void *vargp)
{
 hist[(long)vargp] += 1;
 return NULL;
}

• Each thread receives a
unique array index as a value

• Casting from long to void*
and back is safe

Passing an argument to a thread (2/4) – OK

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {
 long i;
 pthread_t tids[N];

 for (i = 0; i < N; i++)
 long* p = Malloc(sizeof(long));
 *p = i;
 Pthread_create(&tids[i],
 NULL,
 thread,
 p);
 for (i = 0; i < N; i++)
 Pthread_join(tids[i], NULL);
 check();
}

void *thread(void *vargp)
{
 hist[*(long *)vargp] += 1;
 free(vargp);
 return NULL;
}

Passing an argument to a thread (3/4) – OK

• Each thread receives a
unique array index via a
pointer

• Malloc in parent, free in
thread

• Necessary if passing structs

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {
 long i;
 pthread_t tids[N];

 for (i = 0; i < N; i++)
 Pthread_create(&tids[i],
 NULL,
 thread,
 &i);
 for (i = 0; i < N; i++)
 Pthread_join(tids[i], NULL);
 check();
}

void *thread(void *vargp)
{
 hist[*(long *)vargp] += 1;
 return NULL;
}

Passing an argument to a thread (4/4) –
WRONG!

• Each thread receives
the same pointer, to i
in main

• Data race: each thread
may or may not read
a unique array index
from i in main

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs
 Question: Which variables in a threaded C program are

shared?
 The answer is not as simple as “global variables are shared” and

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads
reference some instance of x.

 Requires answers to the following questions:
 What is the memory model for threads?
 How are instances of variables mapped to memory?
 How many threads might reference each of these instances?

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory
 Global variables
 Variable declared outside of a function
 Virtual memory contains exactly one instance of any global variable

 Local automatic variables
 Variable declared inside function without static attribute
 Each thread stack contains one instance of each local variable

 Local static variables
 Variable declared inside function with the static attribute
 Virtual memory contains exactly one instance of any local static

variable.

 errno is special
 Declared outside a function, but each thread stack contains one instance

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory

sharing.c

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])
{
 long i;
 pthread_t tid;

char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL,
thread,
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local auto vars: 1 instance (i.m, msgs.m, tid.m)

Local auto var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
 ptr, cnt, and msgs are shared
 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

char **ptr; /* global var */
int main(int main, char *argv[]) {
 long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",
 "Hello from bar" };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid,
NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:
 ptr, cnt, and msgs are shared
 i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads
 Shared variables are handy...
 …but you risk data races

and synchronization errors.

Coding demo 1:
Counting to 20,000 incorrectly
(with threads)

static unsigned long cnt = 0;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
cnt++;

}
}

int main(int argc, char **argv) {
 unsigned long niters =
 strtoul(argv[1], NULL, 10);

 pthread_t t1, t2;
 Pthread_create(&t1, NULL,
 incr_thread,
 (void *)niters);
 Pthread_create(&t2, NULL,
 incr_thread,
 (void *)niters);
 Pthread_join(&t1, NULL);
 Pthread_join(&t2, NULL);
 if (cnt != 2*niters) {
 printf(“BOOM! cnt=%lu\n", cnt);
 return 1;
 } else {
 printf("OK: cnt=%lu\n", cnt);
 return 0;
 }
}

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++;

C code for counter loop in thread i

movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution
 Key idea: Any interleaving of instructions is possible,

and some give an unexpected result!
 Ii denotes that thread i executes instruction I
 %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
 Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)
 How about this ordering?

 We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs
A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2) denotes state
where thread 1 has
completed L1 and thread
2 has completed S2.

(L1, S2)

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz time!

https://canvas.cmu.edu/courses/42532/quizzes/127203

https://canvas.cmu.edu/courses/42532/quizzes/127203

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
 Need to guarantee mutually exclusive access to each critical section.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MUTual EXclusion (mutex)
 Mutex: opaque object which is either locked or unlocked
 Boolean value, but cannot do math on it
 Starts out unlocked
 Two operations: lock and unlock

 lock(m)
 If the mutex is currently not locked, lock it and return
 Otherwise, wait until it becomes unlocked, then retry

 unlock(m)
 Can only be called when mutex is locked, by the code that locked it
 Change mutex to unlocked

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
 Need to guarantee mutually exclusive access to each critical section.

Coding demo 2:
Counting to 20,000 correctly
(with threads and a mutex)

static unsigned long cnt = 0;
static pthread_mutex_t lock =
PTHREAD_MUTEX_INITIALIZER;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
pthread_mutex_lock(&lock);
cnt++;
pthread_mutex_unlock(&lock);

}
}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1
Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work
Provide mutually exclusive
access to shared variable by
surrounding critical section
with lock and unlock
operations

Mutex invariant creates a
forbidden region that encloses
unsafe region and that cannot
be entered by any trajectory.

H1 lo(m) un(m) T1
Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

Unsafe region

0 1

0

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The Cost of Mutexes

0.48 s

15 s

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: generalization of mutex
 Unsigned integer value, but cannot do math on it.
 Created with some value >= 0
 Two operations: P and V

 P(s) [“Prolaag,” Dutch shorthand for “try to reduce”]
 If s is zero, wait for a V operation to happen.
 Then subtract 1 from s and return.

 V(s) [“Verhogen,” Dutch for “increase”]
 Add 1 to s.
 If there are any threads waiting inside a P operation,

resume one of them

 Unlike mutexes, no requirement to call P before calling V

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

int sem_init(sem_t *s, int pshared, unsigned int val);

Share among processes?
(normally you want to
pass zero, see manpage
for details)

Initial semaphore value

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphore Example

Coding demo 3:
Counting to 20,000 correctly
(with threads and a semaphore)

static unsigned long cnt = 0;
static sem_t lock;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
sem_wait(&lock);
cnt++;
sem_post(&lock);

}
}

int main(int argc, char **argv) {
 unsigned long niters =
 strtoul(argv[1], NULL, 10);
sem_init(&lock, 0, 1);

 // ...
}

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The cost of semaphores: Even slower!

0.48 s

15 s

27.6 s

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Atomic memory operations
 Special hardware instructions
 “Test and set,” “compare and swap”, “exchange and add”, …
 Do a read-modify-write on memory; hardware prevents data races
 Used to implement mutexes, semaphores, etc.

 Not going to get into details, but…
 Wouldn’t it be nice if we could use them directly?
 Especially when we just want to increment a counter?

static _Atomic unsigned long cnt = 0;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
cnt++;

}
}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++;

C code

movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Assembly (unsigned long)
movq (%rdi), %rcx

 testq %rcx,%rcx
 jle .L2

movl $0, %eax
.L3:
 lock addq $1, cnt(%rip)

 addq $1, %rax
 cmpq %rcx, %rax

jne .L3
.L2:

Assembly (_Atomic unsigned long)

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The cost of atomic memory operations

0.48 s

15 s

27.6 s

3.41 s

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
 Access shared variables with care to avoid data races.
 Crucial to understand which variables are shared in the first place
 Avoid sharing, if you can
 Avoid writing from multiple threads, if you can

 Mutexes help, but…
 They’re slow
 (Next time: They can cause problems as well as solve them)

 Don’t use a semaphore when a mutex will do
 They’re even slower
 (Next time: When is a semaphore actually useful?)

 Atomic memory ops are handy, but…
 The hardware might not provide the operation you need
 (Later courses: Tricky to use correctly)

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Supplemental slides

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
Memory is shared between all threads

Don’t let picture confuse you!

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

int hist[N] = {0};

int main(int argc, char *argv[]) {
 long i;
 pthread_t tids[N];

 for (i = 0; i < N; i++)
 Pthread_create(&tids[i],
 NULL,
 thread,
 &hist[i]);
 for (i = 0; i < N; i++)
 Pthread_join(tids[i], NULL);
 check();
}

void *thread(void *vargp)
{
 *(int *)vargp += 1;
 return NULL;
}

Passing an argument to a thread

• Each thread receives a
unique pointer

void check(void) {
 for (int i=0; i<N; i++) {
 if (hist[i] != 1) {
 printf("Failed at %d\n", i);
 exit(-1);
 }
 }
 printf("OK\n");
}

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mutex implementation (partial)
/**
 * void pthread_mutex_lock(pthread_mutex_t *mtx)
 * Lock the mutex pointed to by MTX. If it is already locked,
 * first sleep until it becomes unlocked.
 */
pthread_mutex_lock:
 call gettid // current thread ID now in %eax
 mov $1, %edx // increment
 lock xadd %edx, MUTEX_CONTENDERS(%rdi)
 // %edx now holds _previous_ value of mtx->contenders
 test %edx, %edx
 jne .Lcontended

 // The lock was unlocked, and now we hold it.
 mov %eax, MUTEX_HOLDER(%rdi)
 ret

.Lcontended:
 // Sleep until another thread calls pthread_mutex_unlock
 // (30 more machine instructions and a system call)

Just one of many ways to implement (discussed in 15-410, -418, etc)
All require assistance from the CPU (special instructions)

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphore implementation (partial)
/**
 * void sem_wait(sem_t *sem)
 * Decrement the count of the semaphore pointed to by SEM. If this
 * would make the count negative, first sleep until it is possible to
 * decrement the count without making it negative.
 */
sem_wait:
 mov $-1, %edx // decrement
 lock xadd %edx, SEM_COUNT(%rdi)
 // %edx now holds _previous_ value of sem->count
 test %edx, %edx
 jle .Lclosed
 // The semaphore was open.
 ret

.Lclosed:
 // Sleep until another thread calls sem_post
 // (30 more machine instructions and a system call)

Suspiciously similar to a mutex, huh?
(This implementation makes sem_post do most of the work)

	Slide Number 1
	Synchronization: Basics��15-213/15-513: Introduction to Computer Systems�23rd Lecture, November 21, 2024
	Today
	Traditional View of a Process
	Alternate View of a Process
	A Process With Multiple Threads
	Deadlock vs. Livelock vs. Starvation
	Today
	Shared Variables in Threaded C Programs
	Threads Memory Model: Conceptual
	Threads Memory Model: Actual
	Three Ways to Pass Thread Arg
	Passing an argument to a thread (1/4) – OK
	Passing an argument to a thread (2/4) – OK
	Passing an argument to a thread (3/4) – OK
	Passing an argument to a thread (4/4) – WRONG!
	Shared Variables in Threaded C Programs
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Mapping Variable Instances to Memory
	Shared Variable Analysis
	Shared Variable Analysis
	Synchronizing Threads		
	Assembly Code for Counter Loop
	Concurrent Execution
	Concurrent Execution (cont)
	Concurrent Execution (cont)
	Progress Graphs
	Trajectories in Progress Graphs
	Critical Sections and Unsafe Regions
	Critical Sections and Unsafe Regions
	Quiz time!
	Today
	Enforcing Mutual Exclusion
	MUTual EXclusion (mutex)
	Enforcing Mutual Exclusion
	Why Mutexes Work
	Why Mutexes Work
	The Cost of Mutexes
	Today
	Semaphores
	C Semaphore Operations
	Semaphore Example
	The cost of semaphores: Even slower!
	Today
	Atomic memory operations
	Assembly Code for Counter Loop
	The cost of atomic memory operations
	Summary
	Supplemental slides
	Don’t let picture confuse you!
	Passing an argument to a thread
	Mutex implementation (partial)
	Semaphore implementation (partial)

