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Today 
 Review: Threads and Concurrency
 Sharing and Data Races   CSAPP 12.4, 12.5.1
 Fixing Data Races
 Mutexes
 Semaphores    CSAPP 12.5.2, 12.5.3
 Atomic memory operations
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Traditional View of a Process

 Process = process context + code, data, and stack

Program context:
    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data
Read-only code/dataPC

brk

Process context

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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Alternate View of a Process

 Process = thread + (code, data, and kernel context)

Shared libraries

Run-time heap

0

Read/write dataThread context:
    Data registers
    Condition codes
    Stack pointer (SP)
    Program counter (PC)

Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
    VM structures
    Descriptor table
    brk pointer
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A Process With Multiple Threads
 Multiple threads can be associated with a process
 Each thread has its own logical control flow 
 Each thread shares the same code, data, and kernel context
 Each thread has its own stack for local variables 

 but not protected from other threads
 Each thread has its own thread id (TID)

Thread 1 context:
    Data registers
    Condition codes
    SP1
    PC1

stack 1

Thread 1
(main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
   VM structures
   Descriptor table
   brk pointer

Thread 2 context:
    Data registers
    Condition codes
    SP2
    PC2

stack 2

Thread 2
 (peer thread)
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Deadlock vs. Livelock vs. Starvation
 Deadlock
 Cycle of wait-for dependencies
 No thread can advance due to the cycle

 Livelock
 Threads are advancing but not making progress

towards their goal

 Starvation
 Some threads make no progress while others do
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Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations
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Shared Variables in Threaded C Programs
 Question: Which variables  in a threaded C program are 

shared?
 The answer is not as simple as “global variables are shared” and 

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads 
reference some instance of x. 
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Threads Memory Model: Conceptual
 Multiple threads run within the context of a single process
 Each thread has its own separate thread context

 Thread ID, stack, stack pointer, PC, condition codes, and GP registers

 All threads share the remaining process context
 Code, data, heap, and shared library segments of the process virtual address space
 Open files and installed handlers

Thread 1 context:
    Data registers
    Condition codes
    SP1
    PC1

stack 1

Thread 1
(private) Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:
    Data registers
    Condition codes
    SP2
    PC2

stack 2

Thread 2
(private)
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Threads Memory Model: Actual
 Separation of data is not strictly enforced:
 Register values are truly separate and protected, but…
 Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model 
is a source of confusion and errors

Thread 1 context:
    Data registers
    Condition codes
    SP1
    PC1

stack 1

Thread 1
(private)

Shared code and data

shared libraries

run-time heap
read/write data

read-only code/data

Thread 2 context:
    Data registers
    Condition codes
    SP2
    PC2

stack 2

Thread 2
(private)

Virtual Address Space 
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Three Ways to Pass Thread Arg
 Malloc/free
 Producer malloc’s space, passes pointer to pthread_create
 Consumer dereferences pointer, frees space
 Always works; necessary for passing large amounts of data

 Cast of int
 Producer casts an int/long to void*, passes to pthread_create
 Consumer casts void* argument back to int/long
 Works for small amounts of data (one number)

 INCORRECT: Pointer to stack slot
 Producer passes address to producer’s stack in pthread_create
 Consumer dereferences pointer
 Why is this unsafe?
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int hist[N] = {0};

int main(int argc, char *argv[]) {
   long i;
   pthread_t tids[N];
    
   for (i = 0; i < N; i++)
     Pthread_create(&tids[i], 
                     NULL, 
                     thread, 
                     &hist[i]);
   for (i = 0; i < N; i++)
     Pthread_join(tids[i], NULL);
}

void *thread(void *vargp)
{
   *(int *)vargp += 1;
   return NULL;
}

Passing an argument to a thread (1/4) – OK 

• Each thread receives a 
unique pointer
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int hist[N] = {0};

int main(int argc, char *argv[]) {
   long i;
   pthread_t tids[N];
    
   for (i = 0; i < N; i++)
     Pthread_create(&tids[i], 
                     NULL, 
                     thread, 
                     (void *)i);
   for (i = 0; i < N; i++)
     Pthread_join(tids[i], NULL);
}

void *thread(void *vargp)
{
   hist[(long)vargp] += 1;
   return NULL;
}

• Each thread receives a 
unique array index as a value

• Casting from long to void* 
and back is safe

Passing an argument to a thread (2/4) – OK 
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int hist[N] = {0};

int main(int argc, char *argv[]) {
   long i;
   pthread_t tids[N];
    
   for (i = 0; i < N; i++)
     long* p = Malloc(sizeof(long));
     *p = i;
     Pthread_create(&tids[i], 
                     NULL, 
                     thread, 
                     p);
   for (i = 0; i < N; i++)
     Pthread_join(tids[i], NULL);
   check();
}

void *thread(void *vargp)
{
   hist[*(long *)vargp] += 1;
   free(vargp);
   return NULL;
}

Passing an argument to a thread (3/4) – OK

• Each thread receives a 
unique array index via a 
pointer

• Malloc in parent, free in 
thread

• Necessary if passing structs
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int hist[N] = {0};

int main(int argc, char *argv[]) {
   long i;
   pthread_t tids[N];
    
   for (i = 0; i < N; i++)
     Pthread_create(&tids[i], 
                     NULL, 
                     thread, 
                     &i);
   for (i = 0; i < N; i++)
     Pthread_join(tids[i], NULL);
   check();
}

void *thread(void *vargp)
{
   hist[*(long *)vargp] += 1;
   return NULL;
}

Passing an argument to a thread (4/4) – 
WRONG!

• Each thread receives
the same pointer, to i 
in main

• Data race: each thread
may or may not read 
a unique array index 
from i in main
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Shared Variables in Threaded C Programs
 Question: Which variables  in a threaded C program are 

shared?
 The answer is not as simple as “global variables are shared” and 

“stack variables are private”

 Def: A variable x is shared if and only if multiple threads 
reference some instance of x. 

 Requires answers to the following questions:
 What is the memory model for threads?
 How are instances of variables mapped to memory?
 How many threads might reference each of these instances?
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Mapping Variable Instances to Memory
 Global variables
 Variable declared outside of a function
 Virtual memory contains exactly one instance of any global variable

 Local automatic variables
 Variable declared inside function without static attribute
 Each thread stack contains one instance of each local variable

 Local static variables
 Variable declared inside  function with the static attribute
 Virtual memory contains exactly one instance of any local static 

variable.

 errno is special
 Declared outside a function, but each thread stack contains one instance
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char **ptr;  /* global var */

int main(int main, char *argv[])
{
    long i;
    pthread_t tid;

char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
    long myid = (long)vargp;
    static int cnt = 0;

    printf("[%ld]:  %s (cnt=%d)\n", 
         myid, ptr[myid], ++cnt);
    return NULL;
}

Mapping Variable Instances to Memory

sharing.c
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char **ptr;  /* global var */

int main(int main, char *argv[])
{
    long i;
    pthread_t tid;

char *msgs[2] = {
        "Hello from foo",
        "Hello from bar"
    };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, 
thread, 
(void *)i);

Pthread_exit(NULL);
}

void *thread(void *vargp)
{
    long myid = (long)vargp;
    static int cnt = 0;

    printf("[%ld]:  %s (cnt=%d)\n", 
         myid, ptr[myid], ++cnt);
    return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local auto vars: 1 instance (i.m, msgs.m, tid.m)

Local auto var:  2 instances (
     myid.p0 [peer thread 0’s stack], 
  myid.p1 [peer thread 1’s stack]
)

sharing.c
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Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus:
 ptr,  cnt, and msgs are shared
 i and myid are not shared

Variable   Referenced by Referenced by Referenced by
instance    main thread? peer thread 0? peer thread 1?

ptr  
cnt  
i.m  
msgs.m   
myid.p0  
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes

char **ptr;  /* global var */
int main(int main, char *argv[]) {
  long i; pthread_t tid;

char *msgs[2] = {"Hello from foo",
                   "Hello from bar" };

ptr = msgs;
for (i = 0; i < 2; i++)

Pthread_create(&tid, 
NULL, thread,(void *)i);

Pthread_exit(NULL);}

void *thread(void *vargp)
{
  long myid = (long)vargp;
  static int cnt = 0;

  printf("[%ld]:  %s (cnt=%d)\n", 
         myid, ptr[myid], ++cnt);
  return NULL;
}
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Shared Variable Analysis
 Which variables are shared?

 Answer: A variable x is shared iff multiple threads 
reference at least one instance of x. Thus:
 ptr,  cnt, and msgs are shared
 i and myid are not shared

Variable   Referenced by Referenced by Referenced by
instance    main thread? peer thread 0? peer thread 1?

ptr  
cnt  
i.m  
msgs.m   
myid.p0  
myid.p1

yes yes yes
no yes yes
yes no no
yes yes yes
no yes no
no no yes
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Synchronizing Threads  
 Shared variables are handy...
 …but you risk data races

and synchronization errors.

Coding demo 1:
Counting to 20,000 incorrectly
(with threads)

static unsigned long cnt = 0;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
cnt++;

}
} 

int main(int argc, char **argv) {
  unsigned long niters =
    strtoul(argv[1], NULL, 10);

  pthread_t t1, t2;
  Pthread_create(&t1, NULL,
                 incr_thread,
                 (void *)niters);
  Pthread_create(&t2, NULL,
                 incr_thread,
                 (void *)niters);
  Pthread_join(&t1, NULL);
  Pthread_join(&t2, NULL);
  if (cnt != 2*niters) {
    printf(“BOOM! cnt=%lu\n", cnt);
    return 1;
  } else {
    printf("OK: cnt=%lu\n", cnt);
    return 0;
  }
}
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Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++; 

C code for counter loop in thread i

movq  (%rdi), %rcx
    testq %rcx,%rcx
    jle   .L2

movl $0, %eax
.L3:
    movq  cnt(%rip),%rdx
    addq  $1, %rdx
    movq  %rdx, cnt(%rip)
    addq  $1, %rax
    cmpq  %rcx, %rax

jne .L3
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i
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Concurrent Execution
 Key idea: Any interleaving of instructions is possible,

and some give an unexpected result!
 Ii denotes that thread i executes instruction I
 %rdxi is the content of %rdx in thread i’s context

H1
L1
U1
S1
H2
L2
U2
S2
T2
T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instri cnt%rdx1

OK

-
-
-
-
-
1
2
2
2
-

%rdx2

Thread 1 
critical section

Thread 2 
critical section
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Concurrent Execution (cont)
 Incorrect ordering: two threads increment the counter, 

but the result is 1 instead of 2

H1
L1
U1
H2
L2
S1
T1
U2
S2
T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instri cnt%rdx1

-
-
-
-
0
-
-
1
1
1

%rdx2

Oops!
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Concurrent Execution (cont)
 How about this ordering?

 We can analyze the behavior using a progress graph

H1
L1
H2
L2
U2
S2
U1
S1
T1
T2

1
1
2
2
2
2
1
1
1
2

i (thread) instri cnt%rdx1 %rdx2

0
0

0
1
1 1

1
1 1

1 Oops!
1
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Progress Graphs
A progress graph depicts
the discrete execution 
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst1, Inst2).

E.g., (L1, S2)  denotes state
where  thread 1 has
completed L1 and thread
2 has completed S2.

(L1, S2) 

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
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Trajectories in Progress Graphs

A trajectory is a sequence of legal 
state transitions that describes one 
possible concurrent execution of the 
threads.

Example:

H1, L1, U1, H2, L2,  S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2
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Critical Sections and Unsafe Regions

L, U, and S form a critical 
section with respect to the 
shared variable cnt

Instructions in critical 
sections (wrt some shared 
variable) should not be 
interleaved

Sets of states where such 
interleaving occurs form 
unsafe regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region
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Critical Sections and Unsafe Regions

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

critical section wrt cnt

critical 
section 

wrt 
cnt

Unsafe region

Def: A trajectory is safe  iff it does 
not enter any unsafe region

Claim: A trajectory is correct (wrt 
cnt)  iff it is safe

unsafe

safe
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Quiz time!

https://canvas.cmu.edu/courses/42532/quizzes/127203

https://canvas.cmu.edu/courses/42532/quizzes/127203
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Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations
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Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so 
that they can never have an unsafe trajectory. 
 Need to guarantee mutually exclusive access to each critical section.
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MUTual EXclusion (mutex)
 Mutex: opaque object which is either locked or unlocked
 Boolean value, but cannot do math on it
 Starts out unlocked
 Two operations: lock and unlock

 lock(m)
 If the mutex is currently not locked, lock it and return
 Otherwise, wait until it becomes unlocked, then retry

 unlock(m)
 Can only be called when mutex is locked, by the code that locked it
 Change mutex to unlocked
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Enforcing Mutual Exclusion
 Question: How can we guarantee a safe trajectory?

 Answer: We must synchronize the execution of the threads so 
that they can never have an unsafe trajectory. 
 Need to guarantee mutually exclusive access to each critical section.

Coding demo 2:
Counting to 20,000 correctly
(with threads and a mutex)

static unsigned long cnt = 0;
static pthread_mutex_t lock =
PTHREAD_MUTEX_INITIALIZER;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
pthread_mutex_lock(&lock);
cnt++;
pthread_mutex_unlock(&lock);

}
}
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Why Mutexes Work
Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

Mutex invariant creates a 
forbidden region that encloses 
unsafe region and that cannot 
be entered by any trajectory.

H1 lo(m) un(m) T1
Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

-1

Unsafe region
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Why Mutexes Work
Provide mutually exclusive 
access to shared variable by 
surrounding critical section 
with lock and unlock 
operations

Mutex invariant creates a 
forbidden region that encloses 
unsafe region and that cannot 
be entered by any trajectory.

H1 lo(m) un(m) T1
Thread 1

Thread 2

L1 U1 S1

H2

lo(m)

un(m)

T2

L2

U2

S2

Initially
m = 1

1 0 0 0

0

Unsafe region

0 1

0
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The Cost of Mutexes

0.48 s

15 s
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Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations



Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores
 Semaphore: generalization of mutex
 Unsigned integer value, but cannot do math on it.
 Created with some value >= 0
 Two operations: P and V

 P(s)  [“Prolaag,” Dutch shorthand for “try to reduce”]
 If s is zero, wait for a V operation to happen.
 Then subtract 1 from s and return.

 V(s) [“Verhogen,” Dutch for “increase”]
 Add 1 to s.
 If there are any threads waiting inside a P operation,

resume one of them

 Unlike mutexes, no requirement to call P before calling V
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C Semaphore Operations

Pthreads functions:
#include <semaphore.h>

int sem_wait(sem_t *s);  /* P(s) */
int sem_post(sem_t *s);  /* V(s) */

int sem_init(sem_t *s, int pshared, unsigned int val);

Share among processes?
(normally you want to 
pass zero, see manpage 
for details)

Initial semaphore value
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Semaphore Example

Coding demo 3:
Counting to 20,000 correctly
(with threads and a semaphore)

static unsigned long cnt = 0;
static sem_t lock;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
sem_wait(&lock);
cnt++;
sem_post(&lock);

}
}

int main(int argc, char **argv) {
  unsigned long niters =
    strtoul(argv[1], NULL, 10);
sem_init(&lock, 0, 1);

  // ...
}
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The cost of semaphores: Even slower!

0.48 s

15 s

27.6 s
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Today
 Review: Threads and Concurrency
 Sharing and Data Races
 Fixing Data Races
 Mutexes
 Semaphores
 Atomic memory operations
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Atomic memory operations
 Special hardware instructions
 “Test and set,” “compare and swap”, “exchange and add”, …
 Do a read-modify-write on memory; hardware prevents data races
 Used to implement mutexes, semaphores, etc.

 Not going to get into details, but…
 Wouldn’t it be nice if we could use them directly?
 Especially when we just want to increment a counter?

static _Atomic unsigned long cnt = 0;

void *incr_thread(void *arg) {
unsigned long i;
unsigned long niters =
(unsigned long) arg;

for (i = 0; i < niters; i++) {
cnt++;

}
}
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Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
cnt++; 

C code

movq  (%rdi), %rcx
    testq %rcx,%rcx
    jle   .L2

movl $0, %eax
.L3:
    movq  cnt(%rip),%rdx
    addq  $1, %rdx
    movq  %rdx, cnt(%rip)
    addq  $1, %rax
    cmpq  %rcx, %rax

jne .L3
.L2:

Assembly (unsigned long)
movq  (%rdi), %rcx

    testq %rcx,%rcx
    jle   .L2

movl $0, %eax
.L3:
    lock addq $1, cnt(%rip)

    addq  $1, %rax
    cmpq  %rcx, %rax

jne .L3
.L2:

Assembly (_Atomic unsigned long)
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The cost of atomic memory operations

0.48 s

15 s

27.6 s

3.41 s
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Summary
 Access shared variables with care to avoid data races.
 Crucial to understand which variables are shared in the first place
 Avoid sharing, if you can
 Avoid writing from multiple threads, if you can

 Mutexes help, but…
 They’re slow
 (Next time: They can cause problems as well as solve them)

 Don’t use a semaphore when a mutex will do
 They’re even slower
 (Next time: When is a semaphore actually useful?)

 Atomic memory ops are handy, but…
 The hardware might not provide the operation you need
 (Later courses: Tricky to use correctly)
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Supplemental slides



Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
Memory is shared between all threads

Don’t let picture confuse you!

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/data

Kernel context:
   VM structures
   Descriptor table
   brk pointer

Thread 1 context:
    Data registers
    Condition codes
    SP1
    PC1

Thread 2 context:
    Data registers
    Condition codes
    SP2
    PC2

stack 2

Thread 2 (peer thread)
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int hist[N] = {0};

int main(int argc, char *argv[]) {
   long i;
   pthread_t tids[N];
    
   for (i = 0; i < N; i++)
     Pthread_create(&tids[i], 
                     NULL, 
                     thread, 
                     &hist[i]);
   for (i = 0; i < N; i++)
     Pthread_join(tids[i], NULL);
   check();
}

void *thread(void *vargp)
{
   *(int *)vargp += 1;
   return NULL;
}

Passing an argument to a thread

• Each thread receives a 
unique pointer

void check(void) {
   for (int i=0; i<N; i++) {
     if (hist[i] != 1) {
       printf("Failed at %d\n", i);
       exit(-1);
     }
   }
   printf("OK\n");
}  
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Mutex implementation (partial)
/**
 * void pthread_mutex_lock(pthread_mutex_t *mtx)
 * Lock the mutex pointed to by MTX.  If it is already locked,
 * first sleep until it becomes unlocked.
 */
pthread_mutex_lock:
        call    gettid           // current thread ID now in %eax
        mov     $1, %edx         // increment
   lock xadd    %edx, MUTEX_CONTENDERS(%rdi)
        // %edx now holds _previous_ value of mtx->contenders
        test    %edx, %edx
        jne     .Lcontended

        // The lock was unlocked, and now we hold it.
        mov     %eax, MUTEX_HOLDER(%rdi)
        ret

.Lcontended:
        // Sleep until another thread calls pthread_mutex_unlock
        // (30 more machine instructions and a system call)

Just one of many ways to implement (discussed in 15-410, -418, etc)
All require assistance from the CPU (special instructions)
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Semaphore implementation (partial)
/**
 * void sem_wait(sem_t *sem)
 * Decrement the count of the semaphore pointed to by SEM.  If this
 * would make the count negative, first sleep until it is possible to
 * decrement the count without making it negative.
 */
sem_wait:
        mov     $-1, %edx         // decrement
   lock xadd    %edx, SEM_COUNT(%rdi)
        // %edx now holds _previous_ value of sem->count
        test    %edx, %edx
        jle     .Lclosed
        // The semaphore was open.
        ret

.Lclosed:
        // Sleep until another thread calls sem_post
        // (30 more machine instructions and a system call)

Suspiciously similar to a mutex, huh?
(This implementation makes sem_post do most of the work)
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