
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Final 
Review Session

Josh, Parth, Jerry

Sunday, December 8th



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

■ Thursday December 12, 8:30-11:30AM

■ Location

○ DH 2210, DH 2315, DH 2302, DH 2105, DH 2122

■ Physical Cheat Sheets - 2 pages double sided

○ No previous exam questions 

■ Bring your IDs to the exam! 

Final Exam Logistics
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Overview of Final Exam Topics

■ Low-level C (structs, alignment)

■ Bits, Bytes, Ints (datalab)

■ Assembly (bomblab)

■ Stacks (attacklab)

■ Caches (cachelab)

■ Malloc and Dynamic Memory Allocation (malloclab) 

■ Virtual Memory

■ Processes, Signals, IO (tshlab)

■ Proxy, Threads, Synchronization (proxylab)
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Structs/Alignment
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Alignment Rules

■ Primitive Types

○ char: 1-byte aligned

○ short: 2-byte aligned

○ int: 4-byte aligned

○ long/pointer-type: 8-byte aligned

■ Structs

○ Uses the alignment of the largest primitive within the 

struct. 
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Example: Struct

■ How would the following struct be represented in memory?
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Example: Struct

a1,a2 are ints - 4 bytes each

a1 a1 a1 a1 a2 a2 a2 a2
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Example: Struct

b,c are 1 btye each and have no 
alignment requirements

a1 a1 a1 a1 a2 a2 a2 a2

b c
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Example: Struct

d is 4 bytes and must be 4 byte 
aligned.  What is our current 
alignment status?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

■ 8+1+1 = 10 => Need padding!
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Example: Struct

e is 2 bytes and must be 2 byte 
aligned.  What is our current 
alignment status?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

e e

■ 10+1+1+4 = 16 => Already satisfied!
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Example: Struct

Now we have a constant length 
array - what is the alignment policy?

a1 a1 a1 a1 a2 a2 a2 a2

b c - - d d d d

e e buf buf buf buf - -

■ Takes alignment of primitive type!
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Example: Nested Struct

■ How would the following struct (final_nested) be 

represented in memory?
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Example: Nested Struct

■ Remember: Structs take the highest alignment requirement of 

its fields! 

■ What is the alignment of  struct final?

■ Alignment of struct final is 4
○ int is the largest type

x x x x a1 a1 a1 a1

a2 a2 a2 a2 b c - -

d d d d e e buf buf

buf buf
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Example: Nested Struct

■ Finally, we have a long, which has 
alignment of 8 bytes

x x x x a1 a1 a1 a1

a2 a2 a2 a2 b c - -

d d d d e e buf buf

buf buf - - - - - -

y y y y y y y y
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Caches
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Caches - Quick Review

■ Direct Mapped vs. N-way associative vs. fully associative

○ What do these mean and how might they have an 

advantage over the other?

■ Eviction Policy

○ The main one we covered was LRU (least recently used)
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Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. 

■ What would the address decomposition look like?

  … 0 0 0 0 0 0 0 0 0 0 0 0
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Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. 

■ What would the address decomposition look like?

○ 4 sets = 2^2 sets => 2 set bits

  … 0 0 0 0 0 0 0 0 0 0 0 0

○ 64 byte blocks => 2^6 byte blocks => 6 block offset bits

○ Remainder is tag!
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Cache

■ Suppose you have a 2-way associative cache with 4 sets and 

64 byte blocks. Assume A and B are cache-aligned. 

○ What is the miss rate of pass 1 and pass 2?
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Cache - Pass 1

■ We have 64 byte blocks, indicating a cache line holds 16 ints

■ We iterate through 64 elements with stride 4

○ 16 iterations total

■ How many iterations access the same cache line?

○ 4 iterations covers 16 elements = one block
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Cache - Pass 1

■ Then what is our miss rate?

■ 4 iterations cover one cache line, meaning the first is a cold 

miss, then the next 3 are hits!

■ This pattern repeats across all batches of iterations, giving us 

a miss rate of 1/4
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Cache - Pass 2

■ Once again we iterate through 64 elements with stride 4

○ 16 iterations total

■ Remember our cache does not reset before pass 1 and pass 2. 

What is the state of our cache before pass 2?
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Cache 2 - Pass 2

■ We had 4 cache line accesses from the 4 batches of iterations 

from pass 1. Remember each set has 2 lines and we have 4 

sets.

A[0-15]

A[16-31]

A[32-47]

A[48-63]

-

-

-

-

■ Do we need to evict from the cache during pass 2?

Set 0

Set 1

Set 2

Set 3
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Cache 2 - Pass 2

■ No, we do not need to evict!

○ We access 4 memory blocks of B in pass 2, and since there 

are 2 lines per set, we do not need to evict

A[0-15]

A[16-31]

A[32-47]

A[48-63]

B[0-15]

B[16-31]

B[32-47]

B[48-63]

Set 0

Set 1

Set 2

Set 3

■ Yay! Our cache was the same size as our working set.
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Cache 2 - Pass 2

■ Now what is our miss rate?

■ Per batch of iterations, we have 4 hits to A, 1 cold miss to B, 

and 3 following hits to B.

■ This yields a miss rate of 1/8
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Virtual Memory
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Virtual Memory - Review

Physical Addressing

Memory address refers to an exact location in 
memory—only used in simple systems

Virtual Addressing

Memory address refers to a process-specific 
address, mapped to physical memory via the 
hardware memory management unit.

One of the Great Ideas Of Computer Science™
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Virtual Memory - Review

■ Now that we’ve done tshlab, let’s ask: is VM really that 

helpful?

■ It definitely is! Not only does VM give us a way to access the 

disk, but it also gives us address space isolation! 
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Virtual Memory - Page Table

Virtual addresses are mapped to 
physical addresses in the page 
table. Each entry is called a page 
table entry.

Pages are in memory, like a 
cache. If they are not available 
in memory, we have a page 
miss.

A page miss causes a page 
fault, which causes the OS to 
fetch the page from disk and 
evict a page from DRAM.
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Virtual Memory - Multi-Level Page Tables

■ The size of a page table quickly gets out of control when we 

have to address large addresses space.

■ The solution is to nest page tables. The VPO/PPO acts as the 

pseudo-”block offset”
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Example - Multi-Level Page Table

■ Consider a system with 32 bit virtual address space and a 24 

bit physical address space. Page Size is 4KB. Assume the size 

of entries in the Page Table is 4 bytes.

■ Question of interest : How would we map the virtual address 

space? Is a single-level page table enough? Do we need more 

levels? Let’s dive into it….



Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Address Decomp.)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 1: How many bits in the virtual/physical address for 

page offset?

■ VPO = PPO = log
2
(page size) = 12 bits

20 bits 12 bits

to be discussed in later slides offset (VPO = PPO)
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Example (PTEs in Pages)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 2: How many PTEs (page table entries) fit inside a 

single page?

■ # of PTEs in a page = size of a page / size of a PTE

○ 4KB/4B = 2^12/2^2 = 2^10 = 1024
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Example (Mapping PTEs to VA)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 3: How many PTEs are required to map the entire 

VA space?

■ # of PTEs for VA space = size of VA space/size of a page

○ 2^32/2^12 = 2^20 PTEs



Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Now let’s talk about how we can extend this to a multi-level 

page table

■ So far, we’ve discussed preliminary values that tell us how to 

map onto the entire VA space.

○ General/“Single-Level” Ideas
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Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 4: How many pages do we need to cover the single 

level page table?

■ # of pages for VA space = # of PTEs to map VA space/# of PTEs 

in a page

○ 2^20/2^10 = 2^10 pages
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Example (Multi-Level Storage)

■ Setup: 32 bit VA, 24 bit PA, Page Size = 4KB, PTE Size = 4 bytes

■ Question 5: How many pages do we need to represent the 

outer level page table?

■ # of pages for outer level = # of pages for VA space / # PTEs in 

a page

○ 2^10/2^10 = 1 page
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Example (Multi-Level Storage)

■ This is what our final multi-level page table would look like
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Example (Multi-Level Storage)

■ Without the outer level, we would have to store the entirety 

of the single-level page table.

○ Oops that’s (2^20 PTEs x 4 bytes) = 2^22 bytes = 4096 KB

○ Also can think of as (2^10 Pages x 4 KB)

■ Great, now we’ve setup a 2-level page table, let’s talk about 

the benefits we get. 
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Example (Multi-Level Storage)

■ Now we have two-levels. Suppose we have a single memory 

access (assuming the page table was empty at first). How 

many pages would be required?

■ Entire outer level (there is only one page)

■ 1 PTE needed from outer level => 1 page in inner level

■ Total 2 pages! We saved a huge chunk of space.

○ 2 pages = 8 KB <<<<<<< 4096 KB
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Processes/Signals
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Processes

■ Goal: figure out what are 

possible outcomes printed 

from executing this 

program.
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Processes

■ Parent calls fork twice and 

forks two children.

■ Child with pid = pid1 

forks another child.

■ In total: 4 processes
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Processes

■ Now a very important step, 

draw the process diagram.
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Processes
■ Parent: 

○ pid1 != 0

○ pid2 != 0

■ Child1: 

○ pid1 == 0

○ pid2 != 0

■ Child2: 

○ pid1 != 0

○ pid2 == 0

■ Grandchild: 

○ pid1 == 0

○ pid2 == 0
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Processes

■ Remember: Each process has 

its own memory space! - Let’s 

figure out the outcomes now

■ Parent: count = 3

■ Child1: count = 2

■ Child2: count = 0

■ Grandchild: count = 2
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Processes

■ Use the process diagram to figure out possible outcomes.

■ 4 print branches, 2 repeated values

○ 4! / 2 = 12 different possible outcomes.
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Processes

■ How does the inclusion of 
wait(NULL) change our 
possible outcomes?
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Processes

■ How does the inclusion of 
wait(NULL) change our 
possible outcomes?

Child 1

Grandchild

Child 2

Parent



Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals
■ Child calls kill(getppid(), SIGUSR{1,2}) between 2-4 times. 

What sequence of kills may print 1? How can you guarantee 

printing 2? What is the range of values printed?
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Signals - Solution

■ Sending the same signal to the parent in all the calls to kill() 
may print 1 since there would be no queuing of signals.
○ All the signals can coalesce and get handled at once

■ We can guarantee printing 2 if we send precisely one SIGUSR1 
and one SIGUSR2.
○ Different signals do not coalesce!

■ We can print 1-4 depending on the manner in which signals 
are sent and received.
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File I/O
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Open files structures
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File I/O

■ How does read offset 
the current position?

■ How does dup2 work?

■ Does fd3 share offset with 
fd2? (after dup2)
○ Yes

○ Incremented by number of 
bytes read

○ dup2(old, new)
○ points new to old

■ What about before 
dup2?

○ No
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File I/O

■ How are file descriptors 
and open file tables 
shared between parent 
and children?

○ Descriptor table is 
copied, open file 
tables and v-node 
tables are shared
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File I/O

■ Child creates a copy of 
the parent fd table
○ dup2/open/close 

in child do NOT affect 
the parent and vice 
versa

■ File descriptors across 
processes share the same 
file offset.

■ Many possible outputs!
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File I/O

■ Parent then child, no 
interleaving case:

○ c = d // in parent
○ c = b // in parent

○ c = c // in child from 
fd1

○ c = e // in child from 
fd3

○ c = d // in child
○ c = e // in child
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File I/O

■ Child then parent, no 
interleaving case:

○ c = b // in child

○ c = d // in child

○ c = c // in child
○ c = d // in child
○ c = e // in parent
○ c = e // in parent



Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

File I/O

■ What does adding a 
waitpid here do?
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Threading/Synchronization
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Classical Problems in Threading
■ Deadlock 

○ Two or more threads are unable to proceed because each 

is waiting for a resource that the other holds.

■ Livelock

○ Two or more threads continuously change their state in 

response to each other - but with no further progress.

■ Starvation

○ One of more threads continuously denied access to 

resources because other threads holds them. 
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Threads

■ What variables might be shared in this code?
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Threads
■ What are some possible execution orders given these 

functions?
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Threads
■ Simple case where each thread fully executes their function 

calls to deposit and withdraw.

Thread A
deposit(4)

Thread A
withdraw(11)

Thread B
withdraw(6)

Thread B
deposit(3)

Thread B
withdraw(7)

balance: 14
fail_count: 0

balance: 8 
fail_count: 0

balance: 11
fail_count: 0

balance: 0
fail_count: 0

balance: 0
fail_count: 1
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Threads
■ Are we guaranteed each thread finishes their calls to deposit 

and withdraw?

■ No, interleaving can take place within these functions!

■ Even loading and storing variables are multi-step operations 

that can be interleaved.
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Threads
■ Assume Thread A just completed deposit(4) and balance = 14.

Thread A enters
withdraw(11)

Computes
balance - amt = 3

Sets
balance = 3

Thread B enters
withdraw(6)

Computes
balance - amt = 8

Sets
Balance = 8
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Threads
■ How can we make this thread safe with one lock?

■ Can we do better?
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Threads
■ What are our critical resources?

○ The two global variables! 

○ Note: They do not need to be protected against each 

other; only within accesses to the same global

■ Let’s use two locks instead!
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Threads

■ Marginal benefit in this case as we perform trivial tasks in 

each case, but will lead to large gains if functions are more 

complex.
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GOOD LUCK!!

[Requin is studying with you guys too :)]
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Q/A
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Other Practice Questions 
(if time remains/for self-reference)
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Assembly
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Assembly

■ Typical questions asked 
■ Given a function, look at assembly to fill in missing portions
■ Given assembly of a function, intuit the behavior of the 

program
■ (More rare) Compare different chunks of assembly, which one 

implements the function given?

■ Important things to remember/put on your cheat sheet:
■ Memory Access formula: D(Rb,Ri,S)
■ Distinguish between mov/lea instructions
■ Callee/Caller save regs
■ Condition codes and corresponding eflags
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Assembly

■ Katherine TODO: pick one
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Assembly

z
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Assembly

z

e = %r8d



Carnegie Mellon

 

Assembly

z

Loop end: add 1, compare, iterate

 i++
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Assembly

z  i++ x > i

cmp %edx, %edi     =>      (edi - edx > 0), same as x > i
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Assembly

z  x > i  i++

We know that e = %r8d...
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Assembly

z  x > i  i++

e << y

Where did %cl come from?
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Assembly

z  x > i  i++

e << y
Again, e = %r8d...
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Assembly

z  x > i  i++

e >> (y - 1)

e << y
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Assembly

z  x > i  i++

e >> (y - 1)

e << y

What’s left?
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Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d
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Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d
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Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d

      d
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Assembly

z  x > i  i++

e >> (y - 1)

e << y

e + d

      d
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Arrays
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Arrays

IMPORTANT POINTS + TIPS: 
● Remember your indexing rules! They’ll 

take you 95% of the way there.
● Be careful about addressing (&) vs. dereferencing (*)
● You may be asked to look at assembly!
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Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val
val[2]
*(val + 2)
&val[2]
val + 2
val + i

Arrays
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Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val    int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Arrays
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Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Arrays
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Good toy examples:

● A can be used as the pointer to the first array element: A[0]

Type Value
val int *   x
val[2] int   2
*(val + 2) int   2
&val[2] int * x + 8
val + 2 int * x + 8
val + i int * x + (4 * i)

Accessing methods:
● val[index]
● *(val + index)

Addressing methods:
● &val[index]
● val + index

Arrays
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Nested indexing rules
● Declared: T A[R][C]
● Contiguous chunk of space (think of multiple arrays lined up next 

to each other)

Arrays



Carnegie Mellon

 

Nested indexing rules:

● Arranged in ROW-MAJOR ORDER - think of row vectors
● A[i] is an array of C elements (“columns”) of type T

Arrays
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Nested indexing rules:

Arrays
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Compiles Bad Deref? Size (bytes)
int A1[3][5]
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays
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Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N    3*5*(4) = 60
int *A2[3][5]
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays



Carnegie Mellon

 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5]
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays
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Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5])
int (*A5[3])[5]

Consider accessing elements of A…. 

Arrays
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Consider accessing elements of A…. 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5]

Arrays
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Consider accessing elements of A…. 

Compiles Bad Deref? Size (bytes)
int A1[3][5] Y N 3*5*(4) = 60
int *A2[3][5] Y N 3*5*(8) = 120
int (*A3)[3][5] Y N 1*8 = 8
int *(A4[3][5]) Y N 3*5*(8) = 120
int (*A5[3])[5] Y N 3*8 = 24

Arrays
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ex., A3: pointer to a 3x5 int array
      *A3: BAD, 3x5 int array (3 * 5 elements * each 4 bytes = 60)
    **A3: BAD, but means stepping inside one of 3 “rows” c

Arrays
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ex.,   A5: array of 3 (int *) pointers
 *A5: 1 (int *) pointer, points to an array of 5 ints
**A5: BAD, means accessing 5 individual ints of the pointer 

(stepping inside “row”)

Arrays
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Sample assembly-type questions

Arrays
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Arrays
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Arrays
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11
0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc
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11
1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory - Tracing
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Virtual Memory
Virtual Address - 18 Bits

Physical Address - 12 Bits

Page Size - 512 Bytes

TLB is 8-way set associative

Cache is 2-way set associative

Final S-02 (#5)
Lecture 17: VM - Systems

http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
https://www.cs.cmu.edu/~213/lectures/17-vm-systems.pdf
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset - Location in the page

Page Size = 512 Bytes = 29 → Need 9 bits
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number - Everything Else



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

2 Indices → 1 Bit

TLBI
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag - Everything Else

TLBITLBT
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
(B) PPN: Physical Page Number
(C) CO: Cache Offset
(D) CI: Cache Index
(E) CT: Cache Tag
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO

AAAAAAAAA
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else

AAAAAAAAABBB
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

AAAAAAAAABBB
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

4 Byte Blocks → 2 Bits

AAAAAAAAABBB

CO
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

AAAAAAAAABBB

CO
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

4 Indices → 2 Bits

AAAAAAAAABBB

COCI
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index
(E) CT: Cache Tag - Everything Else

AAAAAAAAAB

Cache Tag

BB

COCI
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
1 = 0001 A = 1010 9 = 1001 F = 1111 4 = 0100

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0x?? TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x3

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = 0x??

110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = VPO = 0x1F4

001011111110
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Virtual Memory

Q) What is the value of the address?

CO: 0x?? CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0xFF

001011111110


