Carnegie Mellon

15-213 Recitation
Attack Lab

Your TAs
Friday, September 20th

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Reminders
m bomblab was due yesterday (September 19th)

m attacklab has been released, and is due on Thursday

(September 26th)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Agenda

m Review: Structs and Alignment

m Review: Calling Procedures, Stack Frames
m Stacks

m Endianness

m Intro to Attack Lab

m Activity!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Review: structs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Alignment Requirements

m Badly aligned data can harm performance:
o e.g. may need multiple memory accesses instead of just

one.

m Primitive types have pre-determined alignments (machine
dependent):

char =1 byte

short =2 bytes

int =4 bytes

long = 8 bytes

double = 8 bytes

pointer = 8 bytes

O O O O O O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alignment Requirements: Compound
Types

m Compound types:
O Arrays
o Structs
o Unions
m Alignment rules for these types:
1. Alignment requirement of the type = Largest alighment
requirement of its fields/elements.

2. Initial address and size must both be multiples of the
alignment requirement.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for d?
O Primitive: has
pre-defined alignment

double d; :
requirement.

o Alignment: 8

m What s its size?

o Size: 8 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for y?
o Rule (1): struct
struct y { alignment = max
double d; : :
alignment of fields.

o Alignment: 8

m What s its size?

}

o Size: 8 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment
requirement for y?
o Rule (1): struct alignment =

struct y { max alignment of fields.
short c; o Alignment: 8
double d; m Whatis its size?

}

o Rule (2): have to add
padding after c so that d is
8-byte aligned

o Size: 16 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Alignment Requirements: Example

m Whatis the alignment

requirement for x?
struct x { o Rule (1): struct alignment =
char a[4]; max alignment of fields.
struct { o Alignment: 8
short c; m What s its size?
double d; o Rule (2): have to add
} v padding after a so that y is
int b; 8-byte aligned
} o Rule (2): have to add
padding after b so that size
of x is multiple of 8.

o Size: 32 bytes

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

structs: Reordering Fields

8 bytes across

char a[4]

short c

struct y

Padding

m struct xtakesup 32 bytes.

m Can we reorder the fields to do better?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

11

Carnegie Mellon

structs: Reordering Fields

8 bytes across

short c Padding

struct y
double d

m struct xnow takes up 24 bytes!
m Compiler cannot do this optimization. It’s up to the

programmer (you!)

m Note: Can’t move field into or out of y without also changing

how you access those fields in your code.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Review: Calling Procedures, Stack
Frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Review: Calling Procedures

Procedure Call: call label
m Push return address onto the stack (so that we can pass

control back to the caller!)

m Jumpto label

Procedure Return: ret
m Pop address from stack

m This is the address of the next instruction of the caller

m Jump to that address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Example

int outer_ function() {
int result = inner function(l, 2, 3, 4, 5, 6, 7, 8, 9)|

return result + 1;

Lots of arguments!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Example: outer function() calls inner function ()

00000000004011ba <outer function>: Push extra arguments onto
/

e |
srip —#%4011c6: | push $0x9 / stack (note the order!)
4011c8: | push $0x8

40llca: | push $0x7

40llcc: mov $0x6,%r9d
4011d2: mov $0x5,%r8d Dawfor_ <-- 3rsp
4011d8: mov $0x4,%ecx outer function ()
4011dd: mov $0x3, %edx
401le2: mov $0x2,%esi
401le7: mov $0x1,%edi

40llec: call 401136 <inner function>
4011f1: add $0x20,%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Example: outer function() calls inner function ()

00000000004011ba <outer function>: Push extra arguments onto
/

.. '
4011c6: | push $0x9 / stack (note the order!)
4011c8: | push $0x8

40llca: | push $0x7

$rip —#401l1lcc: mov $0x6,%r9d

4011d2: mov $0x5,%r8d Dawfor_

4011d8: mov $0x4,%ecx cuter functionf)

4011dd: mov $0x3, %edx 0x9

401le2: mov $0x2,%esi

401le7: mov $0x1,%edi 0x8

40llec: call 401136 <inner function> 0x7 <-I- %rsp
4011f1: add $0x20,%rsp

T

“Argument Build”
space

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Example: outer function() calls inner function ()

00000000004011ba <outer function>:

. Load up first 6 arguments
4011c6: push $0x9 //////
4011c8: push $0x8

40llca: push $0x7

40llcc: lmov $0x6,%r9d
4011d2: \[mov $0x5,%r8d Dawfor_
4011d8: |mov $0x4,%ecx outer function ()
4011dd: lmov $0x3, %edx 0x9
401le2: lmov $0x2,%esi
4011le7: lmov $0x1,%edi 0x8
srip —#40llec: call 401136 <inner function> 0x7 <-- %rsp

4011f1: add $0x20,%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Example: outer function() calls inner function ()

srip —r401lec:
4011€1:

4011cé6:
4011c8:
40l1llca:

4011cc:
4011d2:
4011d8:
4011dd:
4011le2:
4011e7:

00000000004011ba <outer function>:

push $0x9
push $0x8
push $0x7

mov $0x6,%r9d
mov $0x5,%r8d
mov $0x4,%ecx
mov $0x3, %edx
mov $0x2, %esi
mov $0x1, $edi

call 401136 <inner function>
add $0x20,%rsp

Call!

Data for
outer function()

0x9

0x8

ox7

<-- 3rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

19

Carnegie Mellon

Example: outer function() calls inner function ()

00000000004011ba <outer function>:

Call!
4011c6: push $0x9
4011c8: push $0x8
40llca: push $0x7
40llcc: mov $0x6,%r9d
Data for

4011d2: mov $0x5,%r8d
4011d8: mov $0x4,%ecx
4011dd: mov $0x3, %edx

outer function()

0x9
401le2: mov $0x2,%esi
401le7: mov $0x1, %edi 0x8
40llec: call 401136 <inner function> 0x7
4011f1: |add $0x20,%rsp 0x4011F1 <-- %rsp

(gdb) x /4gx S$rsp Push address of next
Ox7fffffffe3c8: 0x00000000004011f1 0x0000000000000007 instruction to be
Ox7fffffffe3d8: 0x0000000000000008 0x0000000000000009 executed

0000000000401136 <inner function>:

$rip —P401136: endbré4 Pass control to

inner function()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Example: outer function() calls inner function ()

0000000000401136 <inner function>:

Function allocates any
401136: endbr64] space it needs
srip —»40113a: |sub $0x38,%rsp 4—""—————_— P

4011b5: add $0x38,%rsp

4011b9: ret Data for
outer function()

0x9
0x8
0x7
0x4011f1 <-- 3rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Example: outer function() calls inner function ()

0000000000401136 <inner function>: Function allocates any
401136: endbr64 | —

40113a: [sub $0x38,%rsple—— | space it needs

$rip —p- - -

4011b5: add $0x38,%rsp

4011b9: ret Data for
outer function()

0x9

0x8

ox7

0x4011f1

Data for

<-- %rs
inner function() P

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Example: outer function() calls inner function ()

0000000000401136 <inner function>:

401136: endbré64 De-allocate space
40113a: sub $0x38,%rsp /

$rip —4011b5: |add $0x38,%rsp

4011b9: ret Data for
outer function()

0x9

0x8

ox7

0x4011f1

Data for
inner function()

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Example: outer function() calls inner function ()

401136:
40113a:

4011b5:
$rip —$4011b9:

0000000000401136 <inner function>:

endbré64
sub $0x38,%rsp

add $0x38,%rsp

ret

v

De-allocate space

Data for
outer function()

0x9

0x8

ox7

0x4011f1

<-- 3rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

24

Carnegie Mellon

Example: outer function() calls inner function ()

0000000000401136 <inner function>:
401136: endbré64
40113a: sub $0x38,%rsp

4011b5: add
srip —»4011b9: |ret

|

Pop return address from
stack, and jump to it

Data for
outer function()

0x9
0x8
0x7
 owso11£1 | <—- #rsp

00000000004011ba <outer function>:

40llec: call 401136 <inner function>
4011f1: add $0x20,%rsp

Load popped
address into $rip

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

25

Example: outer function() calls inner function ()

0000000000401136 <inner function>: Pop return address from

401136: endbr64 . .
40113a: sub $0x38,3%rsp | stack,andjumptoit

4011b5: add
4011b9: |ret

Data for
outer function()

0x9
0x8
0x7 <-- 3rsp

00000000004011ba <outer function>:

40llec: call 401136 <inner function>
srip —»4011f1: add $0x20,%rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

Stacks

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Manipulating the Stack
m We saw that certain instructions grow the stack, and that

certain instructions shrink the stack:

Growing the stack Shrinking the stack

m sub 0x38, S%rsp m add 0x38, %rsp
m push 3rbp B pop 3rbp

m call m ret

m But what does this look like in memory?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Which way does the stack grow?

m We say that the stack grows

“down” because it grows
L 1l Variabl
towards lower addresses: o8 Tartenaes
Arq 9 Addresses
o e.g. sub 0x38 p %rsp g decreasing
. . Arg 8
m We will draw them this way 7
. Arg 7
in attacklab examples, v
Return Address
too. <-- %rsp

© But you can draw them
in any way that makes . Newstack frames
sense to youl!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Drawing Memory

Conventional Memory Diagram

Carnegie Mellon

Array Example

#define ZLEN 5
typedef int zip dig[ZLEN];

zip dig emu = { 1, 5, 2, 1, 3 };

zip dig mit = { 0, 2, 1, 3, 9 };

zip dig ucb = { 9, 4, 7, 2, 0 };

zip digemu; [3 [5 [2 [1 [3]
I 1 1 1 1 1
16 20 24 28 32 36

zip dig mit; | o | 2 | 1 [3 | 9 |
I 1 1 1 1
36 40 44 48 52 56

zip digucb; [9 T 4 T 7 [2 [o]
I 1 i i 1 1
56 60 64 68 72 76

m Declaration “zip_dig cmu” equivalentto “int cmu[5]”
m Example arrays were allocated in successive 20 byte blocks
® Not guaranteed to happen in general

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses Increasing:
m Towards the right
m Then downwards

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Diagram

Buffer Overflow Stack Example

Before call to gets

r31]r21]r11]ro1

4006c3: add

void echo () echo:

Stack Frame { subg $0x18, %rsp

for call_echo char buf[4]; movqg $rsp, %rdi
gets (buf) ; call gets
00]00]00]00 }
00]|40|06|c3
call_echo:
20 bytes unused 4006be: callg 4006cf <echo>

$0x8, $rsp

buf «— %$rsp

Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Addresses Increasing:
m Towards the left
m Then upwards

30

Carnegie Mellon

Endianness

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Endianness

m Under the hood, we represent everything as a series of

contiguous bytes.

m Endianness refers to how we order the bytes for “simple”

types (integers and floats).

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Carnegie Mellon

Endianness

m Little-Endian:
o Least significant byte is stored at the lowest address.
o Shark Machines are Little-Endian.
o Can assume everything in this class is little-endian unless
otherwise stated.
m Big-Endian:
o Most significant byte is stored at the lowest address.

Mem[O] Mem[1] Mem[2] Mem[3]
32-bit integer

ietndion OXO4 Ox03 0Ox02 OO
0x01020304
ot it ong sgendon OX01 Ox02 0Ox03 0Ox04

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Endianness: Example
m Suppose we draw our diagram with addresses increasing
towards the left, then upwards.

m How are the bytes ordered on a little endian machine?

0x9 P | ?? | 22 | ?? | ?? | ?°? | ?? | ?°
0x8 P | P | 22 | ?? | ?? | ?°? | ?? | ?°
0x7 P2 | 2?2 | 2?22 | ?? | 2?2 | ?? | ?? | ?°
0x401201 P | ?? | 2?22 | 2?2 | ?? | 2?2 | ?? | ?°
Addresses increasing Addresses increasing |
towards the left then towards the left then
upwards upwards Lowest address

byte

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Endianness: Example

0x9 00 | OO | OO | OO [OO | OO | OO | OO
0x8 00 | OO | OO | OO | OO | OO | OO | OB
0x7 00 | OO | OO | OO | OO | OO | OO | O7
0x401201 00 | 00 | 00O | OO0 | 00| 40 | 12 | 01
Addresses increasing Addresses increasing
towards the left then towards the left then
upwards upwards Lowest address

byte

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Endianness Example: Comparing with gdb

00 | OO | 00O | OO | OO | OO | OO | 09

Addresses increasing
00 | OO | OO | OO | OO | OO | OO | 08 towards the left then
upwards

00 | OO | 00O | OO | OO | OO | OO | O7

00 | 00| OO | OO | OO | 40 | 12 | 01

(gdb) x /32bx $rsp
Ox7fffffffe3e8: 0x01 0x12 0x40 0x00 0x00 0x00 0x00 0x00 Addresses increasing

Ox7fffffffe3f0: 0x07 0x00 0x00 0x00 0x00 0x00 0x00 0xO00 towards the right then
Ox7fffffffe3f8: 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 downwards
Ox7fffffffe400: 0x09 0x00 0x00 0x00 0x00 0x00 0x00 0xO00

m gdb draws its diagram with addresses increasing towards the
right then downwards.

m Both diagrams are correct, and are still little-endian!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Attack Lab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Carnegie Mellon

Attack Lab: Overview

m Exploit vulnerabilities in target programs using the techniques
you learned in lecture.

m Hijack their control flow and make them do something else!

m Targets do not explode like in bomblab.

m We’ll get some practice right now!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Activity

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Carnegie Mellon

Activity 1
m Download this week’s handout from the Schedule page.
m Also download the code.
m For now:
o Just open up the source code under src/activity.c.

o We’'ll start by walking through the code together!

$ wget https://www.cs.cmu.edu/~213/activities/rec5. tar

S tar xvf rech.tar
S cd rech

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Activity 1: solve ()

void solve (void) { src/activity.c
long before = 0xb4;
char buf[1l6];
long after = Oxaf;

Gets (buf) ;

if (before == 0x3331323531)
win (0x15213) ;

if (after == 0x3331323831)
win (0x18213) ;

m Assume before and after are stored on the stack.
m |sthere any way for solve () tocallwin () ?
m Based on what you learned in lecture, are there any

vulnerabilities we can exploit here?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Recall: Unsafe Functions
m Cstandard library functions like gets () and strcpy ()
write to buffers, but have no length checks!

o Enables buffer overflow attacks.

Stack Frame
forcal 1 echo

int echo() {

e 0
char buf[4]; i subg $0x18, %rsﬂ
gets (buf) ; movq %rjlo, %rdi

return ... ; call gets

Compiler making space
for buffer +

Can overwrite anythin
a little bit of padding yrning

before the buffer!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Activity 1: Back to solve ()

m Let’s see if we can find a similar vulnerability in solwve () by
looking at the assembly!

m Source code and assembly code are both reproduced on the
back of the handout.

m Draw a stack diagram to see if you can answer the following:
o What does the stack frame look like?
o Where is the saved return address?
o Where do we store buf, before, and after in relation

to each other?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Activity 1: Stack diagram

8 bytes across

=> Ox4006b5 <+0>: sub $0x38,%rsp rsp

<€—| rsp

A

Addresses increase
towards the top of
the slide

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp

rsp+0x38
=> Ox4006b9 <+4>: movq $0xb4,0x28(%rsp)

A

Addresses increase
towards the top of
the slide

< rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Carnegie Mellon

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
=> Ox4006Cc2 <+13>: movq $0xaf,0x8(%rsp)
rsp+0x28

A

Addresses increase
towards the top of
the slide

< rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006Cc2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea ox10(%rsp),%rdi
=> 0x4006d0 <+27>: callqg ©0x40073f <Gets>
rsp+0x28
Addresses increase rsp+0x3
towards the top of
the slide
rsp
48

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity 1: Stack diagram

0x4006b5 <+0>: sub $0x38,%rsp rsp+0x38
0x4006b9 <+4>: movq $0xb4,0x28(%rsp)
0x4006c2 <+13>: movq $0xaf,0x8(%rsp)
0x4006cb <+22>: lea 0x10(%rsp),%rdi
0x4006d0 <+27>: callqg ©0x40073f <Gets>
=> 0x4006d5 <+32>: mov 0x28(%rsp),%rdx

rsp+0x28
rsp+0x10
A

Addresses increase rsp+0x8
towards the top of
the slide

rsp
49

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Activity 1: Exploitation
m Goal:callwin (0x15213)
m Take a few minutes to craft an exploit string!
m Crafting an exploit:
o gets () stopsreading once it sees a newline.

o Will not stop reading when it sees a null terminator.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Activity 2

m Goal:callwin (0x18213)
rsp+0x38
m |sit possible to overwrite
after? rsp+0x28
m What can we overwrite?
m Where could we jump to call
. rsp+0x10
win (0x18213)°
rsp+0x8

<@ rsp

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

- &

e v 77" DN
RVYYVYY A
R 5 /

Ve

The End

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

