
Floating Point

Carnegie Mellon

15-213/18-243: Introduction to Computer Systems
4th Lecture, 26 May 2011

Instructors:

Gregory Kesden

Carnegie Mellon

Last Time: Integers

 Representation: unsigned and signed

 Conversion, casting

 Bit representation maintained but reinterpreted

 Expanding, truncating

 Truncating = mod

 Addition, negation, multiplication, shifting
 Operations are mod 2w

 Pay attention to division of negative numbers

 “Ring” properties hold
 Associative, commutative, distributive, additive 0 and inverse

 Ordering properties do not hold

 u > 0 does not mean u + v > v

 u, v > 0 does not mean u · v > 0

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

Fractional binary numbers

 What is 1011.1012?

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

Carnegie Mellon

• • •

Fractional Binary Numbers

 Representation

 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

• • •

Carnegie Mellon

Fractional Binary Numbers: Examples

 Value Representation

5 3/4 101.112

2 7/8 010.1112

63/64 001.01112

 Observations
 Divide by 2 by shifting right

 Multiply by 2 by shifting left

 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

Carnegie Mellon

Representable Numbers

 Limitation

 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation

 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

IEEE Floating Point

 IEEE Standard 754

 Established in 1985 as uniform standard for floating point arithmetic

 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns

 Nice standards for rounding, overflow, underflow

 Hard to make fast in hardware

 Numerical analysts predominated over hardware designers in defining
standard

Carnegie Mellon

 Numerical Form:
(–1)s M 2E

 Sign bit s determines whether number is negative or positive

 Significand M normally a fractional value in range [1.0,2.0).

 Exponent E weights value by power of two

 Encoding

 MSB s is sign bit s

 exp field encodes E (but is not equal to E)

 frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

Carnegie Mellon

Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

Carnegie Mellon

Normalized Values

 Condition: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as biased value: E = Exp – Bias

 Exp: unsigned value exp

 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)

 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2

 xxx…x: bits of frac

 Minimum when 000…0 (M = 1.0)

 Maximum when 111…1 (M = 2.0 – ε)

 Get extra leading bit for “free”

Carnegie Mellon

Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac= 110110110110100000000002

 Exponent
E = 13

Bias = 127

Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000
s exp frac

Carnegie Mellon

Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = 1 –Bias (instead of E = – Bias)

 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value

 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0

 Numbers very close to 0.0

 Lose precision as get smaller

 Equispaced

Carnegie Mellon

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0

 Represents value (infinity)

 Operation that overflows

 Both positive and negative

 E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

 Case: exp = 111…1, frac ≠ 000…0

 Not-a-Number (NaN)

 Represents case when no numeric value can be determined

 E.g., sqrt(–1), − , 0

Carnegie Mellon

Visualization: Floating Point Encodings

+−

0

+Denorm +Normalized−Denorm−Normalized

+0
NaN NaN

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

Tiny Floating Point Example

 8-bit Floating Point Representation

 the sign bit is in the most significant bit

 the next four bits are the exponent, with a bias of 7

 the last three bits are the frac

 Same general form as IEEE Format

 normalized, denormalized

 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

Carnegie Mellon

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

Dynamic Range (Positive Only)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

Carnegie Mellon

Distribution of Values

 6-bit IEEE-like format

 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.

8 values

s exp frac

1 3-bits 2-bits

Carnegie Mellon

Distribution of Values (close-up view)

 6-bit IEEE-like format

 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

Carnegie Mellon

Interesting Numbers
Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}

Carnegie Mellon

Special Properties of Encoding

 FP Zero Same as Integer Zero

 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison

 Must first compare sign bits

 Must consider −0 = 0

 NaNs problematic

 Will be greater than any other values

 What should comparison yield?

 Otherwise OK

 Denorm vs. normalized

 Normalized vs. infinity

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x f y = Round(x y)

 Basic idea

 First compute exact result

 Make it fit into desired precision

 Possibly overflow if exponent too large

 Possibly round to fit into frac

Carnegie Mellon

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50

 Towards zero $1 $1 $1 $2 –$1

 Round down (−) $1 $1 $1 $2 –$2

 Round up (+) $2 $2 $2 $3 –$1

 Nearest Even (default) $1 $2 $2 $2 –$2

 What are the advantages of the modes?

Carnegie Mellon

Closer Look at Round-To-Even
 Default Rounding Mode

 Hard to get any other kind without dropping into assembly

 All others are statistically biased

 Sum of set of positive numbers will consistently be over- or under-
estimated

 Applying to Other Decimal Places / Bit Positions

 When exactly halfway between two possible values

 Round so that least significant digit is even

 E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)

1.2350001 1.24 (Greater than half way)

1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

Carnegie Mellon

Rounding Binary Numbers

 Binary Fractional Numbers

 “Even” when least significant bit is 0

 “Half way” when bits to right of rounding position = 100…2

 Examples

 Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

Carnegie Mellon

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2

 Significand M: M1 x M2

 Exponent E: E1 + E2

 Fixing

 If M ≥ 2, shift M right, increment E

 If E out of range, overflow

 Round M to fit frac precision

 Implementation

 Biggest chore is multiplying significands

Carnegie Mellon

Floating Point Addition

 (–1)s1 M1 2E1 + (-1)s2 M2 2E2

Assume E1 > E2

 Exact Result: (–1)s M 2E

Sign s, significand M:

 Result of signed align & add

Exponent E: E1

 Fixing
If M ≥ 2, shift M right, increment E

if M < 1, shift M left k positions, decrement E by k

Overflow if E out of range

Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

Carnegie Mellon

Mathematical Properties of FP Add

 Compare to those of Abelian Group

 Closed under addition?

 But may generate infinity or NaN

 Commutative?

 Associative?

 Overflow and inexactness of rounding

 0 is additive identity?

 Every element has additive inverse

 Except for infinities & NaNs

 Monotonicity

 a ≥ b ⇒ a+c ≥ b+c?

 Except for infinities & NaNs

Yes

Yes

Yes

No

Almost

Almost

Carnegie Mellon

Mathematical Properties of FP Mult

 Compare to Commutative Ring

 Closed under multiplication?

 But may generate infinity or NaN

 Multiplication Commutative?

 Multiplication is Associative?

 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?

 Multiplication distributes over addition?

 Possibility of overflow, inexactness of rounding

 Monotonicity

 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

 Except for infinities & NaNs

Yes

Yes
No

Yes

No

Almost

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

Floating Point in C

 C Guarantees Two Levels
float single precision

double double precision

 Conversions/Casting
Casting between int, float, and double changes bit representation

 double/float → int

 Truncates fractional part

 Like rounding toward zero

 Not defined when out of range or NaN: Generally sets to TMin

 int → double

 Exact conversion, as long as int has ≤ 53 bit word size

 int → float

 Will round according to rounding mode

Carnegie Mellon

Creating Floating Point Number

 Steps

 Normalize to have leading 1

 Round to fit within fraction

 Postnormalize to deal with effects of rounding

 Case Study

 Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000

13 00001101

17 00010001

19 00010011

138 10001010

63 00111111

s exp frac

1 4-bits 3-bits

Carnegie Mellon

Normalize

 Requirement

 Set binary point so that numbers of form 1.xxxxx

 Adjust all to have leading one

 Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7

13 00001101 1.1010000 3

17 00010001 1.0001000 4

19 00010011 1.0011000 4

138 10001010 1.0001010 7

63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits

Carnegie Mellon

Rounding

 Binary Fractional Numbers

 “Even” when least significant bit is 0

 “Half way” when bits to right of rounding position = 100…2

Value Fraction Incr? Rounded

128 1.0000000 N 1.000

15 1.1010000 N 1.101

17 1.0001000 N 1.000

19 1.0011000 Y 1.010

138 1.0001010 Y 1.001

63 1.1111100 Y 10.000

Carnegie Mellon

Postnormalize

 Issue

 Rounding may have caused overflow

 Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result float_8

128 1.000 7 128 01110000

13 1.101 3 13 01010101

17 1.000 4 16 01011000

19 1.010 4 20 01011010

138 1.001 7 144 01110001

63 10.000 5 1.000/6 64 01101000

Remember that E = e – bias

Bias = 7

Carnegie Mellon

Floating Point Puzzles

 For each of the following C expressions, either:

 Argue that it is true for all argument values

 Explain why not true
• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

Carnegie Mellon

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

Carnegie Mellon

Summary

 IEEE Floating Point has clear mathematical properties

 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation

 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity

 Makes life difficult for compilers & serious numerical applications
programmers

