Floating Point

15-213/18-243: Introduction to Computer Systems 4th Lecture, 26 May 2011

Instructors:

Gregory Kesden

Last Time: Integers

Representation: unsigned and signed

Conversion, casting

Bit representation maintained but reinterpreted

Expanding, truncating

Truncating = mod

Addition, negation, multiplication, shifting

- Operations are mod 2^w
- Pay attention to division of negative numbers

"Ring" properties hold

Associative, commutative, distributive, additive 0 and inverse

Ordering properties do not hold

- u > 0 does not mean u + v > v
- u, v > 0 does not mean $u \cdot v > 0$

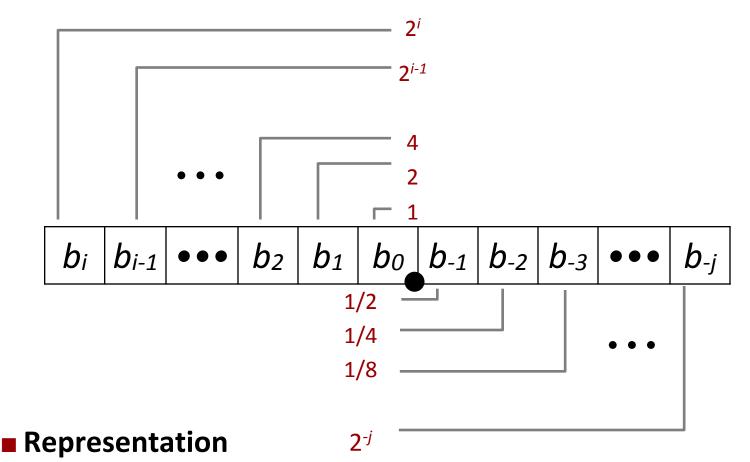
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value	Representation
5 3/4	101.112
2 7/8	10.1112
63/64	1.01112

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 ε

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value Representation

- **1/3** 0.01010101[01]...2
- **1/5** 0.00110011[0011]...2
- **1/10** 0.000110011[0011]...2

Today: Floating Point

Background: Fractional binary numbers

IEEE floating point standard: Definition

- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

(-1)^s M 2^E

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

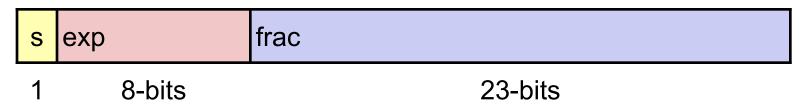
Encoding

- MSB s is sign bit s
- exp field encodes *E* (but is not equal to E)
- frac field encodes M (but is not equal to M)

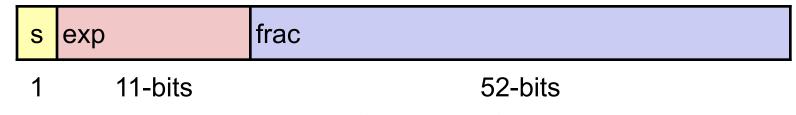
s	ехр	frac
---	-----	------

Precisions

Single precision: 32 bits



Double precision: 64 bits



Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

Normalized Values

■ Condition: exp ≠ 000...0 and exp ≠ 111...1

Exponent coded as *biased* value: E = Exp – Bias

- Exp: unsigned value exp
- Bias = $2^{k-1} 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

■ Significand coded with implied leading 1: *M* = 1.xxx...x₂

- xxx...x: bits of frac
- Minimum when 000...0 (*M* = 1.0)
- Maximum when 111...1 (M = 2.0 ε)
- Get extra leading bit for "free"

Normalized Encoding Example

Value: Float F = 15213.0;

 15213₁₀ = 11101101101101₂ = 1.1101101101101₂ x 2¹³

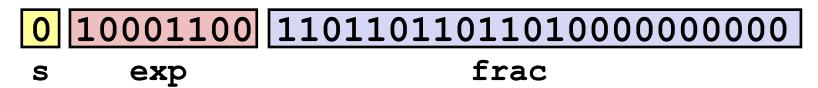
Significand

M =	1.1101101101_2
frac=	$\underline{1101101101101}000000000_2$

Exponent

Ε	=	13		
Bias	=	127		
Ехр	=	140	=	10001100 ₂

Result:



Denormalized Values

- **Condition:** exp = 000...0
- Exponent value: E = 1 Bias (instead of E = Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - **xxx**...**x**: bits of **frac**
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special Values

Condition: exp = 111...1

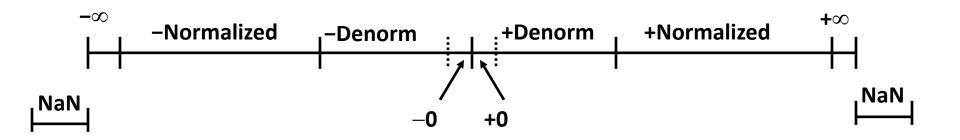
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

Case: exp = 111...1, $frac \neq 000...0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined

• E.g., sqrt(-1),
$$\infty - \infty$$
, $\infty \times 0$

Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

S	exp	frac
1	4-bits	3-bits

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

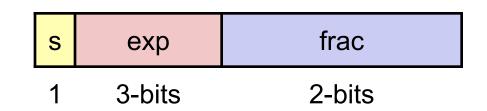
Dynamic Range (Positive Only)

	S	exp	frac	Е	Value
	0	0000	000	-6	0
	0	0000	001	-6	$1/8 \times 1/64 = 1/512$ closest to zero
Denormalized	0	0000	010	-6	$2/8 \times 1/64 = 2/512$
numbers	•••				
	0	0000	110	-6	$6/8 \times 1/64 = 6/512$
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0	0001	000	-6	8/8*1/64 = 8/512
	0	0001	001	-6	9/8*1/64 = 9/512 smallest norm
	0	0110	110	-1	$14/8 \times 1/2 = 14/16$
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	$9/8 \times 1 = 9/8$ closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	$14/8 \times 128 = 224$
	0	1110	111	7	15/8*128 = 240 largest norm
	0	1111	000	n/a	inf

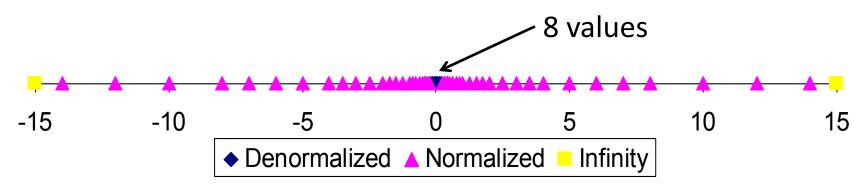
Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 23-1-1 = 3



Notice how the distribution gets denser toward zero.

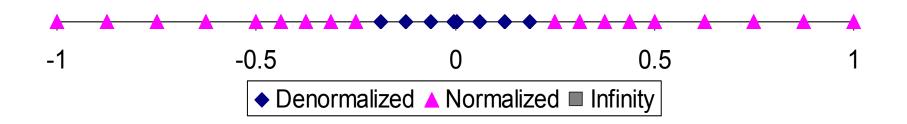


Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

s	exp	frac
1	3-bits	2-bits



Interesting Numbers

{single,double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	2 ^{-{23,52}} x 2 ^{-{126,1022}}
• Single ≈ 1.4×10^{-45}			
Double ≈ 4.9 x 10 ⁻³²⁴			
Largest Denormalized	0000	1111	(1.0 – ε) x 2 ^{-{126,1022}}
Single ≈ 1.18 x 10 ⁻³⁸			
Double ≈ 2.2 x 10 ⁻³⁰⁸			
Smallest Pos. Normalized	0001	0000	1.0 x 2 ^{-{126,1022}}
Just larger than largest denorm	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	(2.0 – ε) x 2 ^{127,1023}
Single ≈ 3.4 x 10 ³⁸			

Double ≈ 1.8 x 10³⁰⁸

Special Properties of Encoding

FP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider –0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\mathbf{x} +_{\mathrm{f}} \mathbf{y} = \mathrm{Round}(\mathbf{x} + \mathbf{y})$$

```
x \times_{f} y = Round(x \times y)
```

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

•	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (– ∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+ ∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

What are the advantages of the modes?

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half way—round down)

Rounding Binary Numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

■ $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$

■ Exact Result: (-1)^s M 2^E

Sign s:	s1 ^ s2
Significand M:	M1 x M2
Exponent <i>E</i> :	E1 + E2

Fixing

- If $M \ge 2$, shift *M* right, increment *E*
- If E out of range, overflow
- Round *M* to fit **frac** precision

Implementation

Biggest chore is multiplying significands

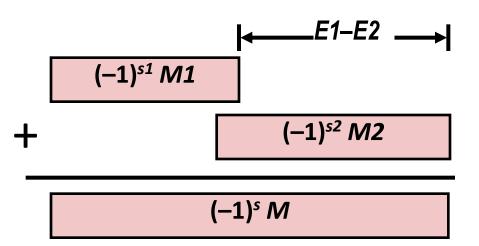
Floating Point Addition

$= (-1)^{s_1} M 1 2^{E_1} + (-1)^{s_2} M 2 2^{E_2}$

Assume E1 > E2

Exact Result: (-1)^s M 2^E Sign s, significand M:

- Result of signed align & add
- Exponent E: E1



Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round *M* to fit **frac** precision

Mathematical Properties of FP Add

Compare to those of Abelian Group

Except for infinities & NaNs

Closed under addition?	Yes
 But may generate infinity or NaN 	
Commutative?	Yes
Associative?	Νο
 Overflow and inexactness of rounding 	
0 is additive identity?	Yes
Every element has additive inverse	Almost
 Except for infinities & NaNs 	
Monotonicity	
• $a \ge b \Rightarrow a+c \ge b+c$?	Almost

Almost

Mathematical Properties of FP Mult

Compare to Commutative Ring

Closed under multiplication?	Yes
 But may generate infinity or NaN 	
Multiplication Commutative?	Yes
Multiplication is Associative?	No
 Possibility of overflow, inexactness of rounding 	
1 is multiplicative identity?	Yes
Multiplication distributes over addition?	No
 Possibility of overflow, inexactness of rounding 	

Monotonicity

- $a \ge b \& c \ge 0 \Rightarrow a * c \ge b * c$?
 - Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

C Guarantees Two Levels

- •float single precision
- **double** double precision

Conversions/Casting

- Casting between int, float, and double changes bit representation
- double/float \rightarrow int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
- int ightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
- int ightarrow float
 - Will round according to rounding mode

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- Postnormalize to deal with effects of rounding

Case Study

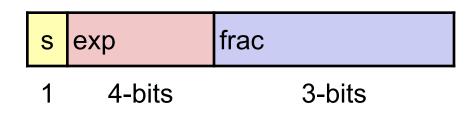
Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	1000000
13	00001101
17	00010001
19	00010011
138	10001010
63	00111111

	S	ехр	frac
-	1	4-bits	3-bits

Normalize



Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	1000000	1.0000000	7
13	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Value	Fraction	Incr?	Rounded
128	1.000 <mark>0000</mark>	Ν	1.000
15	1.101 <mark>0000</mark>	Ν	1.101
17	1.0001000	Ν	1.000
19	1.0011000	Y	1.010
138	1.000 <mark>1010</mark>	Y	1.001
63	1.111 <mark>1100</mark>	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Resul	lt float_8
128	1.000	7		128	01110000
13	1.101	3		13	01010101
17	1.000	4		16	01011000
19	1.010	4		20	01011010
138	1.001	7		144	01110001
63	10.000	5	1.000/6	64	01101000

Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

int x = ...; float f = ...; double d = ...;

Assume neither **d** nor **f** is NaN

- x == (int)(float) x
- x == (int)(double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \qquad \Rightarrow \quad ((d^*2) < 0.0)$
- $d > f \Rightarrow -f > -d$
- d * d >= 0.0
- (d+f)-d == f

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers