
Carnegie Mellon

1

Virtual Memory: Systems

15-213/18-243: Introduction to Computer Systems
18th Lecture, 30 June 2011

Instructors:

Gregory Kesden

Carnegie Mellon

2

Last Time: Virtual Memory Concepts

 Allow for memory space larger than physical memory

 Processes can have identical memory addresses
 Simplifies Linking

 Simplifies Loading

 Simplifies Allocation (request more Heap etc)

 Memory Protection

 Memory Sharing

 Caching Mechanism

Carnegie Mellon

3

Today

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

4

Simple Memory System Example

 Addressing
 14-bit virtual addresses

 12-bit physical address

 Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Carnegie Mellon

5

Simple Memory System Page Table

Only show first 16 entries (out of 256)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Carnegie Mellon

6

Simple Memory System TLB

 16 entries

 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Carnegie Mellon

7

Simple Memory System Cache
 16 lines, 4-byte block size

 Physically addressed

 Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Carnegie Mellon

8

Review of Symbols

 Basic Parameters
 N = 2n : Number of addresses in virtual address space

 M = 2m : Number of addresses in physical address space

 P = 2p : Page size (bytes)

 Components of the virtual address (VA)
 TLBI: TLB index

 TLBT: TLB tag

 VPO: Virtual page offset

 VPN: Virtual page number

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)

 PPN: Physical page number

 CO: Byte offset within cache line

 CI: Cache index

 CT: Cache tag

Carnegie Mellon

9

Address Translation Example #1

Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

Carnegie Mellon

10

Address Translation Example #2

Virtual Address: 0x01CF

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110000

0x7 0x3 0x01 N Y TBD

Carnegie Mellon

11

Address Translation Example #3

Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

Carnegie Mellon

12

Today

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

13

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cacheL3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

MMU
(addr translation)

Instruction
fetch

Instruction
fetch

Core x4

DDR3 Memory controllerDDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

Carnegie Mellon

14

End-to-end Core i7 Address Translation

CPU

VPN VPO

36 12

TLBT TLBI

432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2

99

PTE

CR3

PPN PPO

40 12

Page tables

TLB

miss

TLB

hit

Physical

address

(PA)

Result

32/64

...

CT CO

40 6

CI

6

L2, L3, and

main memory

L1 d-cache

(64 sets, 8 lines/set)

L1

hit

L1

miss

Virtual address (VA)

VPN3 VPN4

99

PTE PTE PTE

Carnegie Mellon

15

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

Each entry references a 4K child page table

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

CD: Caching disabled or enabled for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size either 4 KB or 4 MB (defined for Level 1 PTEs only).

G: Global page (don’t evict from TLB on task switch)

Page table physical base address: 40 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page table location on disk) P=0

526263

Carnegie Mellon

16

Core i7 Level 4 Page Table Entries

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

CD: Cache disabled (1) or enabled (0)

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

G: Global page (don’t evict from TLB on task switch)

Page physical base address: 40 most significant bits of physical page address
(forces pages to be 4KB aligned)

51 12 11 9 8 7 6 5 4 3 2 1 0

UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

17

Core i7 Page Table Translation

CR3

Physical

address

of page

Physical

address

of L1 PT

9

VPO

9 12 Virtual

address

L4 PT

Page

table

L4 PTE

PPN PPO

40 12 Physical

address

Offset into

physical and

virtual page

VPN 3 VPN 4VPN 2VPN 1

L3 PT

Page middle

directory

L3 PTE

L2 PT

Page upper

directory

L2 PTE

L1 PT

Page global

directory

L1 PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512 GB
region

per entry

1 GB
region

per entry

2 MB
region

per entry

4 KB
region

per entry

Carnegie Mellon

18

Cute Trick for Speeding Up L1 Access

 Observation
 Bits that determine CI identical in virtual and physical address

 Can index into cache while address translation taking place

 Generally we hit in TLB, so PPN bits (CT bits) available next

 “Virtually indexed, physically tagged”

 Cache carefully sized to make this possible

Physical

address

(PA)

CT CO

36 6

CI

6

Virtual

address

(VA)
VPN VPO

36 12

PPOPPN

Address

Translation

No

Change

CI

L1 Cache

CT Tag Check

Carnegie Mellon

19

Virtual Memory of a Linux Process

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%esp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x08048000 (32)

0x00400000 (64)

Different for
each process

Carnegie Mellon

20

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

 pgd:
 Page global directory address

 Points to L1 page table

 vm_prot:
 Read/write permissions for

this area

 vm_flags
 Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Carnegie Mellon

21

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:

accessing a non-existing page

Normal page fault

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

22

Today

 Simple memory system example

 Case study: Core i7/Linux memory system

 Memory mapping

Carnegie Mellon

23

Memory Mapping

 VM areas initialized by associating them with disk objects.
 Process is known as memory mapping.

 Area can be backed by (i.e., get its initial values from) :
 Regular file on disk (e.g., an executable object file)

 Initial page bytes come from a section of a file

 Anonymous file (e.g., nothing)

 First fault will allocate a physical page full of 0's (demand-zero page)

 Once the page is written to (dirtied), it is like any other page

 Dirty pages are copied back and forth between memory and a
special swap file.

Carnegie Mellon

24

Demand paging

 Key point: no virtual pages are copied into physical
memory until they are referenced!
 Known as demand paging

 Crucial for time and space efficiency

Carnegie Mellon

25

Sharing Revisited: Shared Objects

 Process 1 maps
the shared
object.

Shared

object

Physical

memory
Process 1

virtual memory

Process 2

virtual memory

Carnegie Mellon

26

Sharing Revisited: Shared Objects

Shared

object

Physical

memory
Process 1

virtual memory

Process 2

virtual memory
 Process 2 maps

the shared
object.

 Notice how the
virtual
addresses can
be different.

Carnegie Mellon

27

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Two processes
mapping a private
copy-on-write
(COW) object.

 Area flagged as
private copy-on-
write

 PTEs in private
areas are flagged
as read-only

Private

copy-on-write object

Physical

memory
Process 1

virtual memory

Process 2

virtual memory

Private

copy-on-write

area

Carnegie Mellon

28

Sharing Revisited:
Private Copy-on-write (COW) Objects

 Instruction writing
to private page
triggers
protection fault.

 Handler creates
new R/W page.

 Instruction
restarts upon
handler return.

 Copying deferred
as long as
possible!

Private

copy-on-write object

Physical

memory
Process 1

virtual memory

Process 2

virtual memory

Copy-on-write

Write to private

copy-on-write

page

Carnegie Mellon

29

The fork Function Revisited

 VM and memory mapping explain how fork provides private
address space for each process.

 To create virtual address for new new process
 Create exact copies of current mm_struct, vm_area_struct, and

page tables.

 Flag each page in both processes as read-only

 Flag each vm_area_struct in both processes as private COW

 On return, each process has exact copy of virtual memory

 Subsequent writes create new pages using COW mechanism.

Carnegie Mellon

30

The execve Function Revisited

 To load and run a new
program a.out in the
current process using
execve:

 Free vm_area_struct’s
and page tables for old areas

 Create vm_area_struct’s
and page tables for new
areas
 Programs and initialized data

backed by object files.
 .bss and stack backed by

anonymous files .

 Set PC to entry point in
.text

 Linux will fault in code and
data pages as needed.

Memory mapped region

for shared libraries

Runtime heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Private, demand-zero

libc.so

.data

.text
Shared, file-backed

Private, demand-zero

Private, demand-zero

Private, file-backed

a.out

.data

.text

Carnegie Mellon

31

User-Level Memory Mapping

void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start

 start: may be 0 for “pick an address”

 prot: PROT_READ, PROT_WRITE, ...

 flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

Carnegie Mellon

32

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

0 0

Carnegie Mellon

33

Using mmap to Copy Files

#include "csapp.h"

/*

* mmapcopy - uses mmap to copy

* file fd to stdout

*/

void mmapcopy(int fd, int size)

{

/* Ptr to mem-mapped VM area */

char *bufp;

bufp = Mmap(NULL, size,

PROT_READ,

MAP_PRIVATE, fd, 0);

Write(1, bufp, size);

return;

}

/* mmapcopy driver */

int main(int argc, char **argv)

{

struct stat stat;

int fd;

/* Check for required cmdline arg */

if (argc != 2) {

printf("usage: %s <filename>\n”,

argv[0]);

exit(0);

}

/* Copy the input arg to stdout */

fd = Open(argv[1], O_RDONLY, 0);

Fstat(fd, &stat);

mmapcopy(fd, stat.st_size);

exit(0);

}

 Copying without transferring data to user space .

