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Concurrent Programming is Hard! 

 The human mind tends to be sequential 

 The notion of time is often misleading 

 Thinking about all possible sequences of events in a computer system 
is at least error prone and frequently impossible 

 Classical problem classes of concurrent programs: 

 Races: outcome depends on arbitrary scheduling decisions elsewhere in 
the system 

 Example: who gets the last seat on the airplane? 

 Deadlock: improper resource allocation prevents forward progress 

 Example: traffic gridlock 

 Livelock / Starvation / Fairness: external events and/or system scheduling 
decisions can prevent sub-task progress 

 Example: people always jump in front of you in line 

 Many aspects of concurrent programming are beyond the scope of 
15-213 
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Iterative Servers 

 Iterative servers process one request at a time 

client 1 server client 2 

connect 

accept connect 

write read 

call read 

close 

accept 

write 

read 

close 

Wait for Client 1 

call read 

write 

ret read 

write ret read 
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Where Does Second Client Block? 

 Second client attempts to 
connect to iterative server 

 Call to connect returns 
 Even though connection not 

yet accepted 

 Server side TCP manager 
queues request 

 Feature known as “TCP 
listen backlog” 

 Call to rio_writen returns 
 Server side TCP manager 

buffers input data 

 Call to rio_readlineb 
blocks 
 Server hasn’t written 

anything for it to read yet. 
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connect 
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Fundamental Flaw of Iterative Servers 

 Solution: use concurrent servers instead 
 Concurrent servers use multiple concurrent flows to serve multiple 

clients at the same time 

User goes 

out to get coffee 

 

Client 1 blocks 

waiting for user 

to type in data 

Client 2 blocks 

waiting to read from server 

Server blocks 

waiting for 

data from 

Client 1 

client 1 server client 2 

connect 

accept connect 

write read 

call read 
write 

call read 
write ret read 
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Creating Concurrent Flows 

 Allow server to handle multiple clients simultaneously 

 1. Processes 
 Kernel automatically interleaves multiple logical flows 

 Each flow has its own private address space 

 2. Threads 
 Kernel automatically interleaves multiple logical flows 

 Each flow shares the same address space 

 3. I/O multiplexing with select() 

 Programmer manually interleaves multiple logical flows 

 All flows share the same address space 

 Relies on lower-level system abstractions 
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Concurrent Servers: Multiple Processes 

 Spawn separate process for each client 
client 1 server client 2 

call connect 
call accept 

call read 

ret connect 
ret accept 

call connect 

call fgets 
fork child 1 

User goes 

out to get 

coffee 

 

Client 1 blocks 

waiting for user 

to type in data 

call accept 
ret connect 

ret accept call fgets 

write fork 

call  

read 

child 2 

write 

call read 

end read 

close 
close 

... 
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Review: Iterative Echo Server 

int main(int argc, char **argv)  

{ 

    int listenfd, connfd; 

    int port = atoi(argv[1]); 

    struct sockaddr_in clientaddr; 

    int clientlen = sizeof(clientaddr); 

 

    listenfd = Open_listenfd(port); 

    while (1) { 

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen); 

 echo(connfd); 

 Close(connfd); 

    } 

    exit(0); 

} 

 Accept a connection request 

 Handle echo requests until client terminates 
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int main(int argc, char **argv)  

{ 

    int listenfd, connfd; 

    int port = atoi(argv[1]); 

    struct sockaddr_in clientaddr; 

    int clientlen=sizeof(clientaddr); 

 

    Signal(SIGCHLD, sigchld_handler); 

    listenfd = Open_listenfd(port); 

    while (1) { 

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 

 if (Fork() == 0) {  

     Close(listenfd); /* Child closes its listening socket */ 

     echo(connfd);    /* Child services client */ 

     Close(connfd);   /* Child closes connection with client */ 

     exit(0);         /* Child exits */ 

 } 

 Close(connfd); /* Parent closes connected socket (important!) */ 

    } 

} 

Process-Based Concurrent Server 

Fork separate process for 

each client 

Does not allow any 

communication between 

different client handlers 
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Process-Based Concurrent Server 
(cont) 

void sigchld_handler(int sig)  

{ 

    while (waitpid(-1, 0, WNOHANG) > 0) 

 ; 

    return; 

} 

 Reap all zombie children 
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Process Execution Model 

 Each client handled by independent process 

 No shared state between them 

 Both parent & child have copies of listenfd and connfd 

 Parent must close connfd 

 Child must close listenfd 

Client 1 

Server 

Process 

Client 2 

Server 

Process 

Listening 

Server 

Process 

Connection Requests 

Client 1 data Client 2 data 
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Concurrent Server: accept Illustrated 
listenfd(3) 

Client 
1. Server blocks in accept, 
waiting for connection request 
on listening descriptor 
listenfd 

clientfd 

Server 

listenfd(3) 

Client 

clientfd 

Server 
2. Client makes connection request by 
calling and blocking in connect 

Connection 
request 

listenfd(3) 

Client 

clientfd 

Server 
3. Server returns connfd from 
accept. Forks child to handle client. 
Client returns from connect. 
Connection is now established between 
clientfd and connfd 

Server 
Child 

connfd(4) 
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Implementation Must-dos With  
Process-Based Designs 
 Listening server process must reap zombie children 

 to avoid fatal memory leak 

 Listening server process must close its copy of connfd 

 Kernel keeps reference for each socket/open file 

 After fork, refcnt(connfd) = 2 

 Connection will not be closed until refcnt(connfd) == 0 
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View from Server’s TCP Manager 

Client 1 Server Client 2 

cl1> ./echoclient greatwhite.ics.cs.cmu.edu 15213  

srv> ./echoserverp 15213 

srv> connected to (128.2.192.34), port 50437 

cl2> ./echoclient greatwhite.ics.cs.cmu.edu 15213  

srv> connected to (128.2.205.225), port 41656 

Connection Host Port Host Port 

Listening --- --- 128.2.220.10 15213 

cl1 128.2.192.34 50437 128.2.220.10 15213 

cl2 128.2.205.225 41656 128.2.220.10 15213 
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View from Server’s TCP Manager 

 Port Demultiplexing 
 TCP manager maintains separate stream for each connection 

 Each represented to application program as socket 

 New connections directed to listening socket 

 Data from clients directed to one of the connection sockets 

Connection Host Port Host Port 

Listening --- --- 128.2.220.10 15213 

cl1 128.2.192.34 50437 128.2.220.10 15213 

cl2 128.2.205.225 41656 128.2.220.10 15213 
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Pros and Cons of Process-Based Designs 

 + Handle multiple connections concurrently 

 + Clean sharing model 
 descriptors (no) 

 file tables (yes) 

 global variables (no) 

 + Simple and straightforward 

 – Additional overhead for process control 

 – Nontrivial to share data between processes 
 Requires IPC (interprocess communication) mechanisms 

 FIFO’s (named pipes),  System V shared memory and semaphores 
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Approach #2: Multiple Threads 

 Very similar to approach #1 (multiple processes) 
  but, with threads instead of processes 
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Traditional View of a Process 

 Process = process context + code, data, and stack 

shared libraries 

run-time heap 

0 

read/write data 

Program context: 

    Data registers 

    Condition codes 

    Stack pointer (SP) 

    Program counter (PC) 
Kernel context: 

    VM structures 

    Descriptor table 

    brk pointer 

Code, data, and stack 

read-only code/data 

stack 
SP 

PC 

brk 

Process context 
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Alternate View of a Process 

 Process = thread + code, data, and kernel context 

shared libraries 

run-time heap 

0 

read/write data Thread context: 

    Data registers 

    Condition codes 

    Stack pointer (SP) 

    Program counter (PC) 

 Code and Data 

read-only code/data 

stack 
SP 

PC 

brk 

Thread (main thread) 

Kernel context: 

    VM structures 

    Descriptor table 

    brk pointer 
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A Process With Multiple Threads 
 Multiple threads can be associated with a process 

 Each thread has its own logical control flow  

 Each thread shares the same code, data, and kernel context 

 Share common virtual address space (inc. stacks) 

 Each thread has its own thread id (TID) 

shared libraries 

run-time heap 

0 

read/write data Thread 1 context: 

    Data registers 

    Condition codes 

    SP1 

    PC1 

 Shared code and data 

read-only code/data 

stack 1 

Thread 1 (main thread) 

Kernel context: 

   VM structures 

   Descriptor table 

   brk pointer 

Thread 2 context: 

    Data registers 

    Condition codes 

    SP2 

    PC2 

stack 2 

Thread 2 (peer thread) 
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Logical View of Threads 

 Threads associated with process form a pool of peers 
 Unlike processes which form a tree hierarchy 

P0 

P1 

sh sh sh 

foo 

bar 

T1 

Process hierarchy Threads associated with process foo 

T2 
T4 

T5 T3 

shared code, data 

and kernel context 
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Thread Execution 

 Single Core Processor 

 Simulate concurrency 
by time slicing 

 

 

 Multi-Core Processor 

 Can have true 
concurrency 

Time 

Thread A Thread B Thread C Thread A Thread B Thread C 

Run 3 threads on 2 cores 



Carnegie Mellon 

Logical Concurrency 

 Two threads are (logically) concurrent if their flows 
overlap in time 

 Otherwise, they are sequential 

 

 Examples: 
 Concurrent: A & B, A&C 

 Sequential: B & C 

 

 
Time 

Thread A Thread B Thread C 
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Threads vs. Processes 

 How threads and processes are similar 
 Each has its own logical control flow 

 Each can run concurrently with others (possibly on different cores) 

 Each is context switched 

 How threads and processes are different 
 Threads share code and some data 

 Processes (typically) do not 

 Threads are somewhat less expensive than processes 

 Process control (creating and reaping) is twice as expensive as 
thread control 

 Linux numbers: 

– ~20K cycles to create and reap a process 

– ~10K cycles (or less) to create and reap a thread 
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Posix Threads (Pthreads) Interface 
 Pthreads: Standard interface for ~60 functions that 

manipulate threads from C programs 
 Creating and reaping threads 

 pthread_create() 

 pthread_join() 

 Determining your thread ID 

 pthread_self() 

 Terminating threads 

 pthread_cancel() 

 pthread_exit() 

 exit() [terminates all threads] , RET [terminates current thread] 

 Synchronizing access to shared variables 

 pthread_mutex_init 

 pthread_mutex_[un]lock 

 pthread_cond_init 

 pthread_cond_[timed]wait 
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/* thread routine */ 

void *thread(void *vargp) { 

  printf("Hello, world!\n");  

  return NULL; 

} 

The Pthreads "hello, world" Program 
/*  

 * hello.c - Pthreads "hello, world" program  

 */ 

#include "csapp.h" 

 

void *thread(void *vargp); 

 

int main() { 

  pthread_t tid; 

 

  Pthread_create(&tid, NULL, thread, NULL); 

  Pthread_join(tid, NULL); 

  exit(0); 

} 

Thread attributes  

(usually NULL) 

Thread arguments 

(void *p)  

return value 

(void **p) 
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Execution of Threaded“hello, world” 

main thread 

peer thread 

return NULL; main thread waits for  

peer  thread to terminate 

exit()  

terminates  

main thread and  

any peer threads 

call Pthread_create() 

call Pthread_join() 

Pthread_join() returns 

printf() 

(peer thread 

terminates) 

Pthread_create() returns 
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Thread-Based Concurrent Echo Server 
int main(int argc, char **argv) { 

    int port = atoi(argv[1]); 

    struct sockaddr_in clientaddr; 

    int clientlen=sizeof(clientaddr); 

    pthread_t tid;  

 

    int listenfd = Open_listenfd(port); 

    while (1) { 

 int *connfdp = Malloc(sizeof(int)); 

 *connfdp = Accept(listenfd, 

                        (SA *) &clientaddr, &clientlen); 

 Pthread_create(&tid, NULL, echo_thread, connfdp); 

    } 

} 

 Spawn new thread for each client 

 Pass it copy of connection file descriptor 

 Note use of Malloc()! 

 Without corresponding Free() 



Carnegie Mellon 

Thread-Based Concurrent Server (cont) 

/* thread routine */ 

void *echo_thread(void *vargp)  

{   

    int connfd = *((int *)vargp); 

    Pthread_detach(pthread_self());  

    Free(vargp); 

    echo(connfd); 

    Close(connfd); 

    return NULL; 

} 

 Run thread in “detached” mode 

 Runs independently of other threads 

 Reaped when it terminates 

 Free storage allocated to hold clientfd 

 “Producer-Consumer” model 
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Threaded Execution Model 

 Multiple threads within single process 

 Some state between them 

 File descriptors 

Client 1 

Server 

Client 2 

Server 

Listening 

Server 

Connection Requests 

Client 1 data Client 2 data 
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Potential Form of Unintended Sharing 

main thread 

peer1 

    while (1) { 

 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); 

 Pthread_create(&tid, NULL, echo_thread, (void *) &connfd); 

    } 

} 

connfd 

Main thread stack 

vargp 

Peer1 stack 

vargp 

Peer2 stack 
peer2 

connfd = connfd1 

 connfd = *vargp connfd = connfd2 

 connfd = *vargp 

Race! 

Why would both copies of vargp point to same location? 
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Could this race occur? 

int i; 

for (i = 0; i < 100; i++) { 

  Pthread_create(&tid, NULL, 

                 thread, &i); 

} 

 Race Test 
 If no race, then each thread would get different value of i 

 Set of saved values would consist of one copy each of 0 through 99.   

Main 

void *thread(void *vargp)  

{   

  int i = *((int *)vargp); 

  Pthread_detach(pthread_self()); 

  save_value(i); 

  return NULL; 

} 

Thread 
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Experimental Results 

 The race can really happen! 

No Race 

Multicore server 
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Issues With Thread-Based Servers 
 Must run “detached” to avoid memory leak. 

 At any point in time, a thread is either joinable or detached. 

 Joinable thread can be reaped and killed by other threads. 

 must be reaped (with pthread_join) to free memory 
resources. 

 Detached thread cannot be reaped or killed by other threads. 

 resources are automatically reaped on termination. 

 Default state is joinable. 

 use pthread_detach(pthread_self()) to make 
detached. 

 Must be careful to avoid unintended sharing. 
 For example, passing pointer to main thread’s stack 

Pthread_create(&tid, NULL, thread, (void *)&connfd); 

 All functions called by a thread must be thread-safe 
 Stay tuned 
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Pros and Cons of Thread-Based 
Designs 

 + Easy to share data structures between threads 
 e.g., logging information, file cache. 

 + Threads are more efficient than processes. 

 

 – Unintentional sharing can introduce subtle and hard-to-
reproduce errors! 
 The ease with which data can be shared is both the greatest strength 

and the greatest weakness of threads. 

 Hard to know which data shared & which private 

 Hard to detect by testing 

 Probability of bad race outcome very low 

 But nonzero! 

 Future lectures 
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Event-Based Concurrent Servers Using 
I/O Multiplexing 

 Use library functions to construct scheduler within single 
process 

 Server maintains set of active connections 
 Array of connfd’s 

 Repeat: 
 Determine which connections have pending inputs 

 If  listenfd has input, then accept connection 

 Add new connfd to array 

 Service all connfd’s with pending inputs 

 Details in book 
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I/O Multiplexed Event Processing 
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Pros and Cons of I/O Multiplexing 

 + One logical control flow. 

 + Can single-step with a debugger. 

 + No process or thread control overhead. 
 Design of choice for high-performance Web servers and search 

engines. 

 – Significantly more complex to code than process- or thread-
based designs. 

 – Hard to provide fine-grained concurrency 
 E.g., our example will hang up with partial lines. 

 – Cannot take advantage of multi-core 
 Single thread of control 
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Approaches to Concurrency 

 Processes 
 Hard to share resources: Easy to avoid unintended sharing 

 High overhead in adding/removing clients 

 Threads 
 Easy to share resources: Perhaps too easy 

 Medium overhead 

 Not much control over scheduling policies 

 Difficult to debug 

 Event orderings not repeatable 

 I/O Multiplexing 
 Tedious and low level 

 Total control over scheduling 

 Very low overhead 

 Cannot create as fine grained a level of concurrency 

 Does not make use of multi-core 


