Carnegie Mellon

Concurrent Programming

15-213/18-243: Introduction to Computer Systems
244 Lecture, July 26, 2011

Instructors:
Gregory Kesden

Carnegie Mellon

Concurrent Programming is Hard!

The human mind tends to be sequential

The notion of time is often misleading

Thinking about all possible sequences of events in a computer system
is at least error prone and frequently impossible

Classical problem classes of concurrent programs:

= Races: outcome depends on arbitrary scheduling decisions elsewhere in
the system
= Example: who gets the last seat on the airplane?
= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= Livelock / Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

= Example: people always jump in front of you in line

e Many aspects of concurrent programming are beyond the scope of
15-213

Carnegie Mellon

Iterative Echo Server

Client Server
[3\
socket socket
bind > open_listenfd
open clientfd < l
listen
Connection l /
request
L connect « [~ TToToooo- P accept <
v v
Cﬁent/ > rio_writen >rio_:eadlineb<
Server Il ! . .
Session Await connection
rio_readlineb:< rio_writen requestﬁon1
next client
v v
close = f----- EQE ————— »rio readlineb
\ 4
close

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

client 1 server client 2
Connect .. >
accept| e connect
Write fe i?ii,‘ write
call read qennnmmmmmmmnmnnenn
............................. o call read
ret read[*” write ~
close | ... close
..... " >- Wait for Client 1
accept
read
write ,

>| ret read

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client .
, = Server side TCP manager
HEEkEE queues request
= Feature known as “TCP
listen backlog”
open_clientfd m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect [~"""TToToooo- > . .
\ l m Call to rio_readlineb
rio_writen > bIOCkS
] = Server hasn’t written
0 AT P anything for it to read yet.

Fundamental Flaw of Iterative Servers

client 1 server client 2
Connect .. >
accept| e connect
Write b f?i§>‘ """ write

call read
ret read

User goes
out to get coffee

Client 1 blocks
waiting for user
to type in data

A

Server blocks
waiting for
data from
Client 1

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

y

call read

Client 2 blocks
waiting to read from server

Carnegie Mellon

Creating Concurrent Flows

= Allow server to handle multiple clients simultaneously

m 1. Processes
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

m 2. Threads
= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space

m 3.1/0 multiplexing with select ()

" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Relies on lower-level system abstractions

Carnegie Mellon

Concurrent Servers: Multiple Processes

m Spawn separate process for each client

call connect

ret connect
call fgets

client 1 server client 2
cat1 comneotr [eart acept
ret connectq .. PRIREE
.................... ») ret accept
call fgets _
7 child 1 fork
call read call accept
User goes".............:::::::::::::::::::::::Hlub
D L LTELLLE by
Ou;fto 9! ret accept
coliee

Client 1 blocks
waiting for user
to type in data

fork

| ca11 /

write

call read

read
close end read
| lclose

Carnegie Mellon

Review: Iterative Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[l])
struct sockaddr in clientaddr;
int clientlen = sizeof (clientaddr) ;

listenfd = Open listenfd(port);

while (1) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

= Accept a connection request
= Handle echo requests until client terminates

Carnegie Mellon

Process-Based Concurrent Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port atoi (argv[1l]);
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;

Signal (SIGCHLD, sigchld handler) ;
listenfd = Open listenfd(port)

while (1) {
connfd = Accept(listenfd, (SA
if (Fork() == 0) {
Close(listenfd); /* Child
echo (connfd) ; /* Child
Close (connfd) ; /* Child
exit(0) ; /* Child

}

Fork separate process for
each client

Does not allow any
communication between
different client handlers

*) &clientaddr, &clientlen);
closes its listening socket */
services client */

closes connection with client */
exits */

Close (connfd); /* Parent closes connected socket (important!) */

Process-Based Concurrent Server

(cont)

void sigchld handler (int sig)

{
while (waitpid(-1, O, WNOHANG) > 0)

return;

= Reap all zombie children

Carnegie Mellon

Process Execution Model

Connection Requests
Listening
Server
Process
Client 1 Client 2
Client 1 data | Server Server Client 2 data
"| Process Process |

= Each client handled by independent process

= No shared state between them

= Both parent & child have copies of listenfd and connfd
= Parent must close connfd
= Child must close listenfd

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection request
clientfd on listening descriptor
listenfd
Connection listenfd (3)
request . > 2. Client makes connection request by
Client i T Server calling and blocking in connect
clientfd
listenfd (3)
® 3. Server returns connfd from
Server accept. Forks child to handle client.
Client returns from connect.
E— Connection is now established between
Client L) ‘ L Child clientfdand connfd

clientfd connfd (4)

Implementation Must-dos With
Process-Based Designs

m Listening server process must reap zombie children
= to avoid fatal memory leak
m Listening server process must close its copy of connfd

= Kernel keeps reference for each socket/open file
= After fork, refcnt (connfd) = 2
= Connection will not be closed until refcnt (connfd) ==

Carnegie Mellon

View from Server’s TCP Manager

Client1l Client2 Server

srv> ./echoserverp 15213

cll> ./echoclient greatwhite.ics.cs.cmu.edu 15213

srv> connected to (128.2.192.34), port 50437

cl2> ./echoclient greatwhite.ics.cs.cmu.edu 15213

srv> connected to (128.2.205.225), port 41656

Listening - 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213

View from Server’s TCP Manager
_m_m

Listening - 128.2.220.10 15213
cll 128.2.192.34 50437 128.2.220.10 15213
cl2 128.2.205.225 41656 128.2.220.10 15213

m Port Demultiplexing

= TCP manager maintains separate stream for each connection
= Each represented to application program as socket
= New connections directed to listening socket
= Data from clients directed to one of the connection sockets

Carnegie Mellon

Pros and Cons of Process-Based Designs

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)
m + Simple and straightforward
m — Additional overhead for process control
m — Nontrivial to share data between processes
= Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores

Approach #2: Multiple Threads

m Very similar to approach #1 (multiple processes)
= but, with threads instead of processes

Carnegie Mellon

Traditional View of a Process

m Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP —
Data registers
Condition codes

shared libraries

Stack pointer (SP) brk _

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC — read-only code/data

Descriptor table
brk pointer

Carnegie Mellon

Alternate View of a Process

m Process = thread + code, data, and kernel context

Program counter (PC) Kernel context:

VM structures
Descriptor table
brk pointer

Thread (main thread) Code and Data
e : shared libraries
! stack ! ,
: SP : brk run-time heap
: Thread context: | read/write data
! Data registers | PC — read-only code/data
I Condition codes : 0
: Stack pointer (SP) .
! :
I I

A Process With Multiple Threads

m Multiple threads can be associated with a process
= Each thread has its own logical control flow
= Each thread shares the same code, data, and kernel context
= Share common virtual address space (inc. stacks)
= Each thread has its own thread id (TID)

Thread 1 (main thread) Shared code and data Thread 2 (peer thread)
shared libraries
stack 1 stack 2
run-time heap
Thread 1 context: read/write data Thread 2 context:
Data registers read-only code/data Data registers
Condition codes . Condition codes
SP1 SP2
PC1 Kernel context: PC2
VM structures

Descriptor table
brk pointer

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® @ ®
' (P1)

OJOXO,

“«| shared code, data
and kernel context

Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate concurrency " Can have true
by time slicing concurrency
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

Logical Concurrency

m Two threads are (logically) concurrent if their flows
overlap in time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
= Concurrent: A&B,A&C | T I --
= Sequentia:B&C | T I -----------------------
Time | I """

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
= Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Eachis context switched

m How threads and processes are different
= Threads share code and some data
= Processes (typically) do not
" Threads are somewhat less expensive than processes

= Process control (creating and reaping) is twice as expensive as
thread control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit()
» exit () [terminates all threads], RET [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init
= pthread mutex [un]lock
= pthread cond init

= pthread cond [timed]wailt

Carnegie Mellon

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" :
Thread attributes
void *thread (void *vargp) ; (usually NULL)
int main() {
pthread t tid; Thread a.rg*uments
— (void *p)
Pthread create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL);
exit (0) ;
} return value
: (void **p)
/* thread routine */

void *thread(void *wvargp) {
printf ("Hello, world!\n");
return NULL;

Carnegie Mellon

Execution of Threaded“hello, world”

main thread

call Pthread_create()

v oo e | e peer thread
alPtvead jon) | e
printf ()
main thread waits for return NULL;
peer thread to terminate (peer thread

................................... iaten
Pthread_join() returns far=""

exit ()
terminates '
main thread and
any peer threads

Carnegie Mellon

Thread-Based Concurrent Echo Server

int main(int argc, char **argv) ({
int port = atoi(argv[l])
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread t tid;

int listenfd = Open_ listenfd(port);
while (1) {
int *connfdp = Malloc(sizeof (int)) ;
*connfdp = Accept(listenfd,

(SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo thread, connfdp);

= Spawn new thread for each client

= Pass it copy of connection file descriptor
= Note use of Malloc()!

= Without corresponding Free()

Thread-Based Concurrent Server (cont)

/* thread routine */

void *echo thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach (pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

}

= Run thread in “detached” mode
= Runs independently of other threads
= Reaped when it terminates

" Free storage allocated to hold clientfd
= “Producer-Consumer” model

Carnegie Mellon

Threaded Execution Model

Connection Requests

Listening
Server

: Client 2
Client 1 data. %I'een':i: S:Cer Client 2 data

= Multiple threads within single process
= Some state between them
= File descriptors

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, é&clientlen);
Pthread create(&tid, NULL, echo_thread, (void *) &connfd);

}
}
main thread
Main thread stack
connfd = connfd, connfd
..................................... peer, Peer1 stack
..... * ovaes
connfd = connfd, < >]connfd =*vargp
.................. Race!
............................. peer,
........................... R Peer, stack
\connfd =*vargp 1§ —

Why would both copies of vargp point to same location?

Carnegie Mellon

Could this race occur?

Main Thread
int i; void *thread(void *wvargp)
for (i = 0; i < 100; i++) { {
Pthread create(&tid, NULL, int i = *((int *)wvargp):
thread, &i); Pthread detach(pthread self());
} save value (i)
return NULL;
}

m Race Test
" |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99.

Carnegie Mellon

Experimental Results

No Race

0 2 4 6 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

2

1
0

Single core laptop

3

i

1

o L ANNERR RRRNARRR RRRRAR NARRNARRNNRRRNARD ARRNARRD RRNNARRNARRARRNNR AR R

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

Multicore server
14

12

10

il L ‘ 1111111

0 2 46 810121416182022242628303234363840424446485052545658606264666870727476788082848688909294 9698

m The race can really happen!

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak.
= At any point in time, a thread is either joinable or detached.
= Joinable thread can be reaped and killed by other threads.

= must be reaped (with pthread join)to free memory
resources.

= Detached thread cannot be reaped or killed by other threads.
= resources are automatically reaped on termination.
= Default state is joinable.

» use pthread detach (pthread self ()) tomake
detached.

m Must be careful to avoid unintended sharing.

= For example, passing pointer to main thread’s stack
Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
= Stay tuned

Carnegie Mellon

Pros and Cons of Thread-Based
Designs

m + Easy to share data structures between threads

= e.g., logging information, file cache.

m + Threads are more efficient than processes.

m — Unintentional sharing can introduce subtle and hard-to-
reproduce errors!

" The ease with which data can be shared is both the greatest strength
and the greatest weakness of threads.

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low

= But nonzero!
= Future lectures

Event-Based Concurrent Servers Using

/0 Multiplexing

m Use library functions to construct scheduler within single
process

m Server maintains set of active connections
= Array of connfd’s

m Repeat:
= Determine which connections have pending inputs
= |f listenfd has input, then accept connection
= Add new connfd to array
= Service all connfd’s with pending inputs

m Details in book

Carnegie Mellon

/O Multiplexed Event Processing

Read
Active Descriptors Pending Inputs
listenfd = 3 listenfd=3 €
clientfd clientfd

0 10 | 10

1 7 > Active 7 ¢

2 4 < 4

3 - -1

> Inactive
4 -1 -1
<

S 12 L pe 12 |

6 5) Active 5 .

7 -1) -1

8 1 -1

9 -1 Never Used -1

Carnegie Mellon

Pros and Cons of /O Multiplexing

m + One logical control flow.
m + Can single-step with a debugger.

m + No process or thread control overhead.

= Design of choice for high-performance Web servers and search
engines.

m - Significantly more complex to code than process- or thread-
based designs.

m — Hard to provide fine-grained concurrency
= E.g., our example will hang up with partial lines.

m — Cannot take advantage of multi-core
= Single thread of control

Carnegie Mellon

Approaches to Concurrency

m Processes

= Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients

m Threads
= Easy to share resources: Perhaps too easy
" Medium overhead

®= Not much control over scheduling policies
= Difficult to debug

= Event orderings not repeatable

O I/O Multiplexing
Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency
= Does not make use of multi-core

