
Carnegie Mellon

Concurrent Programming
15-213/18-243: Introduction to Computer Systems
24rd Lecture, July 26, 2011

Instructors:

Gregory Kesden

Carnegie Mellon

Concurrent Programming is Hard!

 The human mind tends to be sequential

 The notion of time is often misleading

 Thinking about all possible sequences of events in a computer system
is at least error prone and frequently impossible

 Classical problem classes of concurrent programs:

 Races: outcome depends on arbitrary scheduling decisions elsewhere in
the system

 Example: who gets the last seat on the airplane?

 Deadlock: improper resource allocation prevents forward progress

 Example: traffic gridlock

 Livelock / Starvation / Fairness: external events and/or system scheduling
decisions can prevent sub-task progress

 Example: people always jump in front of you in line

 Many aspects of concurrent programming are beyond the scope of
15-213

Carnegie Mellon

Client /
Server
Session

Iterative Echo Server
Client Server

socket socket

bind

listen

rio_readlineb

rio_writen rio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

accept connect

Carnegie Mellon

Iterative Servers

 Iterative servers process one request at a time

client 1 server client 2

connect

accept connect

write read

call read

close

accept

write

read

close

Wait for Client 1

call read

write

ret read

write ret read

Carnegie Mellon

Where Does Second Client Block?

 Second client attempts to
connect to iterative server

 Call to connect returns
 Even though connection not

yet accepted

 Server side TCP manager
queues request

 Feature known as “TCP
listen backlog”

 Call to rio_writen returns
 Server side TCP manager

buffers input data

 Call to rio_readlineb
blocks
 Server hasn’t written

anything for it to read yet.

Client

socket

rio_readlineb

rio_writen

Connection
request

open_clientfd

connect

Carnegie Mellon

Fundamental Flaw of Iterative Servers

 Solution: use concurrent servers instead
 Concurrent servers use multiple concurrent flows to serve multiple

clients at the same time

User goes

out to get coffee

Client 1 blocks

waiting for user

to type in data

Client 2 blocks

waiting to read from server

Server blocks

waiting for

data from

Client 1

client 1 server client 2

connect

accept connect

write read

call read
write

call read
write ret read

Carnegie Mellon

Creating Concurrent Flows

 Allow server to handle multiple clients simultaneously

 1. Processes
 Kernel automatically interleaves multiple logical flows

 Each flow has its own private address space

 2. Threads
 Kernel automatically interleaves multiple logical flows

 Each flow shares the same address space

 3. I/O multiplexing with select()

 Programmer manually interleaves multiple logical flows

 All flows share the same address space

 Relies on lower-level system abstractions

Carnegie Mellon

Concurrent Servers: Multiple Processes

 Spawn separate process for each client
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
fork child 1

User goes

out to get

coffee

Client 1 blocks

waiting for user

to type in data

call accept
ret connect

ret accept call fgets

write fork

call

read

child 2

write

call read

end read

close
close

...

Carnegie Mellon

Review: Iterative Echo Server

int main(int argc, char **argv)

{

 int listenfd, connfd;

 int port = atoi(argv[1]);

 struct sockaddr_in clientaddr;

 int clientlen = sizeof(clientaddr);

 listenfd = Open_listenfd(port);

 while (1) {

 connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

 echo(connfd);

 Close(connfd);

 }

 exit(0);

}

 Accept a connection request

 Handle echo requests until client terminates

Carnegie Mellon

int main(int argc, char **argv)

{

 int listenfd, connfd;

 int port = atoi(argv[1]);

 struct sockaddr_in clientaddr;

 int clientlen=sizeof(clientaddr);

 Signal(SIGCHLD, sigchld_handler);

 listenfd = Open_listenfd(port);

 while (1) {

 connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 if (Fork() == 0) {

 Close(listenfd); /* Child closes its listening socket */

 echo(connfd); /* Child services client */

 Close(connfd); /* Child closes connection with client */

 exit(0); /* Child exits */

 }

 Close(connfd); /* Parent closes connected socket (important!) */

 }

}

Process-Based Concurrent Server

Fork separate process for

each client

Does not allow any

communication between

different client handlers

Carnegie Mellon

Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)

{

 while (waitpid(-1, 0, WNOHANG) > 0)

 ;

 return;

}

 Reap all zombie children

Carnegie Mellon

Process Execution Model

 Each client handled by independent process

 No shared state between them

 Both parent & child have copies of listenfd and connfd

 Parent must close connfd

 Child must close listenfd

Client 1

Server

Process

Client 2

Server

Process

Listening

Server

Process

Connection Requests

Client 1 data Client 2 data

Carnegie Mellon

Concurrent Server: accept Illustrated
listenfd(3)

Client
1. Server blocks in accept,
waiting for connection request
on listening descriptor
listenfd

clientfd

Server

listenfd(3)

Client

clientfd

Server
2. Client makes connection request by
calling and blocking in connect

Connection
request

listenfd(3)

Client

clientfd

Server
3. Server returns connfd from
accept. Forks child to handle client.
Client returns from connect.
Connection is now established between
clientfd and connfd

Server
Child

connfd(4)

Carnegie Mellon

Implementation Must-dos With
Process-Based Designs
 Listening server process must reap zombie children

 to avoid fatal memory leak

 Listening server process must close its copy of connfd

 Kernel keeps reference for each socket/open file

 After fork, refcnt(connfd) = 2

 Connection will not be closed until refcnt(connfd) == 0

Carnegie Mellon

View from Server’s TCP Manager

Client 1 Server Client 2

cl1> ./echoclient greatwhite.ics.cs.cmu.edu 15213

srv> ./echoserverp 15213

srv> connected to (128.2.192.34), port 50437

cl2> ./echoclient greatwhite.ics.cs.cmu.edu 15213

srv> connected to (128.2.205.225), port 41656

Connection Host Port Host Port

Listening --- --- 128.2.220.10 15213

cl1 128.2.192.34 50437 128.2.220.10 15213

cl2 128.2.205.225 41656 128.2.220.10 15213

Carnegie Mellon

View from Server’s TCP Manager

 Port Demultiplexing
 TCP manager maintains separate stream for each connection

 Each represented to application program as socket

 New connections directed to listening socket

 Data from clients directed to one of the connection sockets

Connection Host Port Host Port

Listening --- --- 128.2.220.10 15213

cl1 128.2.192.34 50437 128.2.220.10 15213

cl2 128.2.205.225 41656 128.2.220.10 15213

Carnegie Mellon

Pros and Cons of Process-Based Designs

 + Handle multiple connections concurrently

 + Clean sharing model
 descriptors (no)

 file tables (yes)

 global variables (no)

 + Simple and straightforward

 – Additional overhead for process control

 – Nontrivial to share data between processes
 Requires IPC (interprocess communication) mechanisms

 FIFO’s (named pipes), System V shared memory and semaphores

Carnegie Mellon

Approach #2: Multiple Threads

 Very similar to approach #1 (multiple processes)
 but, with threads instead of processes

Carnegie Mellon

Traditional View of a Process

 Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)
Kernel context:

 VM structures

 Descriptor table

 brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

Carnegie Mellon

Alternate View of a Process

 Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write data Thread context:

 Data registers

 Condition codes

 Stack pointer (SP)

 Program counter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Carnegie Mellon

A Process With Multiple Threads
 Multiple threads can be associated with a process

 Each thread has its own logical control flow

 Each thread shares the same code, data, and kernel context

 Share common virtual address space (inc. stacks)

 Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write data Thread 1 context:

 Data registers

 Condition codes

 SP1

 PC1

 Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:

 VM structures

 Descriptor table

 brk pointer

Thread 2 context:

 Data registers

 Condition codes

 SP2

 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Logical View of Threads

 Threads associated with process form a pool of peers
 Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchy Threads associated with process foo

T2
T4

T5 T3

shared code, data

and kernel context

Carnegie Mellon

Thread Execution

 Single Core Processor

 Simulate concurrency
by time slicing

 Multi-Core Processor

 Can have true
concurrency

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

Carnegie Mellon

Logical Concurrency

 Two threads are (logically) concurrent if their flows
overlap in time

 Otherwise, they are sequential

 Examples:
 Concurrent: A & B, A&C

 Sequential: B & C

Time

Thread A Thread B Thread C

Carnegie Mellon

Threads vs. Processes

 How threads and processes are similar
 Each has its own logical control flow

 Each can run concurrently with others (possibly on different cores)

 Each is context switched

 How threads and processes are different
 Threads share code and some data

 Processes (typically) do not

 Threads are somewhat less expensive than processes

 Process control (creating and reaping) is twice as expensive as
thread control

 Linux numbers:

– ~20K cycles to create and reap a process

– ~10K cycles (or less) to create and reap a thread

Carnegie Mellon

Posix Threads (Pthreads) Interface
 Pthreads: Standard interface for ~60 functions that

manipulate threads from C programs
 Creating and reaping threads

 pthread_create()

 pthread_join()

 Determining your thread ID

 pthread_self()

 Terminating threads

 pthread_cancel()

 pthread_exit()

 exit() [terminates all threads] , RET [terminates current thread]

 Synchronizing access to shared variables

 pthread_mutex_init

 pthread_mutex_[un]lock

 pthread_cond_init

 pthread_cond_[timed]wait

Carnegie Mellon

/* thread routine */

void *thread(void *vargp) {

 printf("Hello, world!\n");

 return NULL;

}

The Pthreads "hello, world" Program
/*

 * hello.c - Pthreads "hello, world" program

 */

#include "csapp.h"

void *thread(void *vargp);

int main() {

 pthread_t tid;

 Pthread_create(&tid, NULL, thread, NULL);

 Pthread_join(tid, NULL);

 exit(0);

}

Thread attributes

(usually NULL)

Thread arguments

(void *p)

return value

(void **p)

Carnegie Mellon

Execution of Threaded“hello, world”

main thread

peer thread

return NULL; main thread waits for

peer thread to terminate

exit()

terminates

main thread and

any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread

terminates)

Pthread_create() returns

Carnegie Mellon

Thread-Based Concurrent Echo Server
int main(int argc, char **argv) {

 int port = atoi(argv[1]);

 struct sockaddr_in clientaddr;

 int clientlen=sizeof(clientaddr);

 pthread_t tid;

 int listenfd = Open_listenfd(port);

 while (1) {

 int *connfdp = Malloc(sizeof(int));

 *connfdp = Accept(listenfd,

 (SA *) &clientaddr, &clientlen);

 Pthread_create(&tid, NULL, echo_thread, connfdp);

 }

}

 Spawn new thread for each client

 Pass it copy of connection file descriptor

 Note use of Malloc()!

 Without corresponding Free()

Carnegie Mellon

Thread-Based Concurrent Server (cont)

/* thread routine */

void *echo_thread(void *vargp)

{

 int connfd = *((int *)vargp);

 Pthread_detach(pthread_self());

 Free(vargp);

 echo(connfd);

 Close(connfd);

 return NULL;

}

 Run thread in “detached” mode

 Runs independently of other threads

 Reaped when it terminates

 Free storage allocated to hold clientfd

 “Producer-Consumer” model

Carnegie Mellon

Threaded Execution Model

 Multiple threads within single process

 Some state between them

 File descriptors

Client 1

Server

Client 2

Server

Listening

Server

Connection Requests

Client 1 data Client 2 data

Carnegie Mellon

Potential Form of Unintended Sharing

main thread

peer1

 while (1) {

 int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);

 Pthread_create(&tid, NULL, echo_thread, (void *) &connfd);

 }

}

connfd

Main thread stack

vargp

Peer1 stack

vargp

Peer2 stack
peer2

connfd = connfd1

 connfd = *vargp connfd = connfd2

 connfd = *vargp

Race!

Why would both copies of vargp point to same location?

Carnegie Mellon

Could this race occur?

int i;

for (i = 0; i < 100; i++) {

 Pthread_create(&tid, NULL,

 thread, &i);

}

 Race Test
 If no race, then each thread would get different value of i

 Set of saved values would consist of one copy each of 0 through 99.

Main

void *thread(void *vargp)

{

 int i = *((int *)vargp);

 Pthread_detach(pthread_self());

 save_value(i);

 return NULL;

}

Thread

Carnegie Mellon

Experimental Results

 The race can really happen!

No Race

Multicore server

0

1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Single core laptop

0

1

2

3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

Carnegie Mellon

Issues With Thread-Based Servers
 Must run “detached” to avoid memory leak.

 At any point in time, a thread is either joinable or detached.

 Joinable thread can be reaped and killed by other threads.

 must be reaped (with pthread_join) to free memory
resources.

 Detached thread cannot be reaped or killed by other threads.

 resources are automatically reaped on termination.

 Default state is joinable.

 use pthread_detach(pthread_self()) to make
detached.

 Must be careful to avoid unintended sharing.
 For example, passing pointer to main thread’s stack

Pthread_create(&tid, NULL, thread, (void *)&connfd);

 All functions called by a thread must be thread-safe
 Stay tuned

Carnegie Mellon

Pros and Cons of Thread-Based
Designs

 + Easy to share data structures between threads
 e.g., logging information, file cache.

 + Threads are more efficient than processes.

 – Unintentional sharing can introduce subtle and hard-to-
reproduce errors!
 The ease with which data can be shared is both the greatest strength

and the greatest weakness of threads.

 Hard to know which data shared & which private

 Hard to detect by testing

 Probability of bad race outcome very low

 But nonzero!

 Future lectures

Carnegie Mellon

Event-Based Concurrent Servers Using
I/O Multiplexing

 Use library functions to construct scheduler within single
process

 Server maintains set of active connections
 Array of connfd’s

 Repeat:
 Determine which connections have pending inputs

 If listenfd has input, then accept connection

 Add new connfd to array

 Service all connfd’s with pending inputs

 Details in book

Carnegie Mellon

I/O Multiplexed Event Processing

10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

0

1

2

3

4

5

6

7

8

9

Active

Inactive

Active

Never Used

listenfd = 3

10

clientfd

7

4

-1

-1

12

5

-1

-1

-1

listenfd = 3

Active Descriptors Pending Inputs

Read

Carnegie Mellon

Pros and Cons of I/O Multiplexing

 + One logical control flow.

 + Can single-step with a debugger.

 + No process or thread control overhead.
 Design of choice for high-performance Web servers and search

engines.

 – Significantly more complex to code than process- or thread-
based designs.

 – Hard to provide fine-grained concurrency
 E.g., our example will hang up with partial lines.

 – Cannot take advantage of multi-core
 Single thread of control

Carnegie Mellon

Approaches to Concurrency

 Processes
 Hard to share resources: Easy to avoid unintended sharing

 High overhead in adding/removing clients

 Threads
 Easy to share resources: Perhaps too easy

 Medium overhead

 Not much control over scheduling policies

 Difficult to debug

 Event orderings not repeatable

 I/O Multiplexing
 Tedious and low level

 Total control over scheduling

 Very low overhead

 Cannot create as fine grained a level of concurrency

 Does not make use of multi-core

