
Page 1 of 11

Andrew login ID: ________________

 Full Name: ________________

 Section: ________________

15-213/18-243, Summer 2011

Exam 1
Tuesday, June 28, 2011

Instructions:

• Make sure that your exam is not missing any sheets, then write your Andrew login ID, full name, and

section on the front.

• This exam is closed book, closed notes. You may not use any electronic devices.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate your

final answer.

• The exam has a maximum score of 100 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

 1 (12):

 2 (12):

 3 (9):

 4 (20):

 5 (15):

 6 (20):

 7 (12):

TOTAL (100):

Page 2 of 11

Question 1. (12 points)

Bits, bytes, and floats.

For the conversions below, please make sure that you show all your work and your intermediate

steps. Answers that only contain end results will not be graded even if they are correct.

A-) Convert 11.6875 to IEEE 32-bit floating point format.

11.6875 = 11 11/16 = 11 + ½ + 3/16 = 1011.1011

1011.1011 = 1.0111011 x 2^3

Bias = 127

3+bias = exp  Exp = 130 = 10000010

0100 0001 0011 1011 0000 0000 0000 0000 (413B0000)

B-) Perform the following addition in the form of 8-bit, twos complement binary addition. Note

if there is an overflow or not.

-72 + 61 = 11110101, No overflow

-72 = 10111000

61 = 00111101

C-) An 8-bit location in memory contains value c9 (in hex). This value would have different

interpretations when it represents an 8-bit floating point number, or an 8-bit signed integer, or an

8-bit unsigned integer. Find its numerical interpretations in decimal. Again, show your work

clearly.

8-bit floating point number =

S = 1

Exp =1001 = 9

Bias = 2^(4-1)-1 = 7

Frac = 001

1.01 * 2^(9-7) = 100.1 = 4.5; Sign was 1  Answer = -4.5

Signed Integer = -55

Unsigned Integer = 201

Page 3 of 11

Question 2. (12 points)

Structs.

Consider the following struct:

typedef struct

{

char a[5];

short b[3];

double c;

long double d;

int* e;

int f;

float* g;

} MYSTR;

Part 1.
Show how the struct above would appear on a 64-bit (“x86 64”) Linux machine. Label the bytes

that belong to the various fields with their names and clearly mark the end of the struct. Use x’s

to indicate bytes that are wasted in the struct.
aaaaaxbb bbbbxxxx
cccccccc xxxxxxxx
dddddddd dddddddd
eeeeeeee ffffxxxx
gggggggg

Part 2.

Rearrange the above fields in the above struct such that it would consume the most space in

memory.

The struct is maximal in its current form however; other arrangements which result in maximum

number of bytes are also accepted.

Part 3.

Rearrange the above fields in the above struct such that it would consume the least space in

memory.

dddddddd dddddddd
cccccccc eeeeeeee
gggggggg ffffbbbb
bb aaaaax

Page 4 of 11

Question 3. (9 points)

Assembly to C.

Consider the 64-bit assembly code for a simple sort function. We provide parts of the

corresponding C code on the next page. Please fill in the missing parts of the C code.

mysterysort:

 mov $1, %r8

 jmp L1

L2:

 movl (%rdi, %r8, 4), %r11d

 mov $0, %r9

 jmp L3

L4:

 movl (%rdi, %r9, 4), %eax

 cmp %eax, %r11d

 jge L7

 mov %r8, %r10

 jmp L6

L5:

 mov 0xfffffffffffffffc(%rdi, %r10, 4), %eax

 mov %eax, (%rdi, %r10, 4)

 sub $1, %r10d

L6:

 cmp %r9, %r10

 jg L5

 movl %r11d, (%rdi, %r9, 4)

 jmp L1

L7:

 add $1, %r9

L3:

 cmp %r8, %r9

 jl L4

 add $1, %r8

L1:

 cmp %rsi, %r8

 jl L2

 retq

Page 5 of 11

void mysterysort(int *arr, int len)

{

 int i, j, k, temp;

 for(i = _1_; i < len; i++) {

 temp = arr[i];

 for(j = 0; j < i; j++) {

 if(temp < arr[j]) {

 for(k = i; k > j; k--) {

 arr[k] = arr[k-1];

 }

 arr[j] = temp;

 break;

 }

 }

 }

}

Page 6 of 11

Question 4. (20 points)

Stacks.

Consider the C code for calculating Fibonacci numbers and the corresponding 32-bit assembly

code. On the chart on the next page, please document the entire state of the stack as detailed as

possible just before a call to fib(4) would return, but before it has popped its stack frame, noting

that higher addresses are closer to the top of the page. Your trace should begin with the

arguments from the stack frame of the caller of fib(4). Please also document where the relevant

registers would point on your diagram. Note that you may not find it necessary to use all of the

blanks. If you find a need, you may refer to the addresses on which the marked lines of code

would be with the letter with which they are marked.

int fib(int n)

{

 /* computes the nth fibonacci number */

 if(n < 2) {

 return 1;

 }

 return fib(n-1) + fib(n-2);

}

fib:

push %ebp

mov %esp,%ebp

sub $0xc,%esp

mov %ebx,0xfffffff8(%ebp)

mov %esi,0xfffffffc(%ebp)

mov 0x8(%ebp),%esi

mov $0x1,%eax

cmp $0x1,%esi

jle cleanup

lea 0xffffffff(%esi),%eax

mov %eax,(%esp)

call fib # Address “A”

mov %eax,%ebx # Address “B”

lea 0xfffffffe(%esi),%eax

mov %eax,(%esp)

call fib # Address “C”

add %ebx,%eax # Address “D”

cleanup:

mov 0xfffffff8(%ebp),%ebx

mov 0xfffffffc(%ebp),%esi

mov %ebp,%esp

pop %ebp

ret

Page 7 of 11

Higher addresses

Lower Addresses

4

Return address to caller

Old %ebp  %ebp, and X

Old %esi

Old %ebx

2  %esp

D

X  Y

4 (would accept esi)

3 (would accept ebx)

0

D

Y  Z

2 (same)

1 (same)

0

D

Z

2 (same)

1 (same)

Page 8 of 11

Question 5 (15 points)

Jump Table.

Consider the assembly dump for a switch and jump table given below. The switch expression

and all case and break statements have been removed from the C code below it. Using what you

know, fill in the switch expression, as well as case statements and break statements on the lines

below, noting that you may not use every line.

L1:

 .quad L6

 .quad L4

 .quad L5

 .quad L3

 .quad L4

 .quad L4

 .quad L2

 .quad L6

scramble:

 cmpq $7, %rdi

 ja L4

 jmp *L1(,%rdi, 8)

L2:

 movl (%rdx), %r8d

 addl %r8d, (%rsi)

 jmp L7

L3:

 movl (%rsi), %r8d

 mov $5, %r9

 movl %r8d, (%rdx, %r9, 4)

 jmp L7

L4:

 movl $15213, (%rsi)

 jmp L7

L5:

 movl (%rdx), %r8d

 movl %r8d, (%rsi)

L6:

 movl (%rsi), %r8d

 lea (%r8, %r8, 2), %r8

 movl %r8d, (%rsi)

 jmp L7

L7:

 ret

Page 9 of 11

void scramble(unsigned a, int * b, int * c)

{

 switch(a) {

________case 3:_________________________________

 c[5] = *b;

____________break;_____________________________

________case 6:_________________________________

 *c += *b;

____________break;_____________________________

________case 2:_________________________________

 *b = *c;

________case 0:_________________________________

________case 7:_________________________________

 *b *= 3;

____________break;_____________________________

________default:_________________________________

*b = 15213;

____________break; (optional)_____________________________

 }

}

Page 10 of 11

Question 6. (20 points)

Caches.

Part 1.

Assume that we have an initially empty 16 byte cache and there is a sequence of accesses to this

cache. Write down the miss/hit sequence for a 4-byte blocks, direct-mapped cache. Describe

your reasoning/work for credit.

Address Hit/Miss

0x00 Miss

0x0c Miss

0x01 Hit

0x11 Miss

0x0f Hit

0x03 Miss

Part 2.

Assume that we have an initially empty 16 byte cache and there is a sequence of accesses to this

cache. Write down the miss/hit sequence for a 4-byte blocks, 2-way set-associative cache.

Describe your reasoning/work for credit.

Address Hit/Miss

0x00 Miss

0x0c Miss

0x01 Hit

0x11 Miss

0x0f Hit

0x03 Hit

Part 3.

For a cache with 128 byte cache lines, give the address of the first word in the line containing the

following addresses:

0x3892ae4f = 0x3892ae00

0x4637e20c = 0x4637e200

Part 4.

A 16KB cache has a line length of 64 bytes. How many sets does the cache have if it is 2-way

associative, or if it is 8-way associative?

#(Sets) = #(Lines) / Associativity

16KB = 2^14

#(Lines) = 2^8

2-way-associative = (2^8) / 2 = 2^7 = 128

8-way-associative = (2^8) / (2^3) = 2^5 = 32

Page 11 of 11

Question 7. (12 points)

Cache Performance.

Part 1.

Given the data below, what is the impact of cache associativity on cache performance? Compare

the performance of the direct mapped cache with its 2-way associative version in terms of the

average miss penalty.

 Hit time for direct mapped cache = 7.9 clock cycles.

 Hit time for 2-way associative version = 8.2 clock cycles.

 Miss rate for direct mapped cache = 17%

 Miss rate for 2-way associative version = 12%

 Miss penalty for both versions = 180 clock cycles.

Miss_Rate * Miss_Penalty

17/100 *180 = 30.6

12/100 *180 = 21.6

I have also given points to:

Hit_Time + Miss_Rate * Miss_Penalty

Direct: 7.9 + 17/100 *180 = 38.5

2-way: 8.2 + 12/100 *180 = 29.8

Associative cache has better performance.

Part 2.

Assume that in 500 memory references there are 35 misses in the first-level L1 cache, 15 misses

in the second-level L2 cache. What are the miss rates of L1 and L2 caches? Miss penalty of L2

cache is 150 clock cycles while its hit time is 12 clock cycles. The hit time of L1 cache is 2 clock

cycles. What is the average memory access time?

Miss Rate for L1 = 35 misses / 500 references = 70/1000 = 7%

Local Miss Rate for L2 = 15/35 = 3/7

Global Miss Rate for L2 = 15/500 = 3/100 = 3%

Avg Mem Access =

Hit_Time_L1 + Miss_Rate_L1 x (Hit_Time_L2 + Miss_Rate_L2 x Miss_Penalty_L2)

2 + 7/100 (12 + 15/35 * 150) = 7.34

