
Andrew login ID:

Full Name:

CS 15-213, Spring 2003

MAKEUP - Final Exam
May 7, 2003

Instructions:

• Make sure that your exam has 25 pages and is not missing any sheets, then write your full name and
Andrew login ID on the front.
• Write your answers in the space provided below the problem. If you make a mess, clearly indicate

your final answer.
• The exam has a maximum score of 114 points.
• The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy

points quickly and then come back to the harder problems.
• This exam is OPEN BOOK. You may use any books or notes you like. You may not use a calculator,

laptop or any other electronic or wireless device. Good luck!

1 (9):

2 (11):

3 (10):

4 (5):

5 (12):

6 (8):

7 (25):

8 (12):

9 (15):

10 (4):

11 (6):

12 (9):

TOTAL (114):

1 of 25

Problem 1. (9 points):

Assume we are running code on an8-bit machine using two’s complement arithmetic for signed integers.
Short integers are encoded using4 bits. Sign extension is performed whenever ashort is cast to anint .
For this problem, assume that all shift operations are arithmetic. All constants areint s. Fill in the empty
boxes in the table below.

int i = -6;
unsigned ui = i;
short s = -7;
unsigned short us = s;

Note: TMax denotes the largest positive two’s complementint and TMin denotes the minimum negative
two’s complementint . Please use only hex notation (i.e. not binary) for ‘Hex Representation’.

Expression Decimal Representation Hex Representation

27 27

-16 −16

i

i >> 2

ui

(int) s

(int)(6 ˆ s)

(int) us

TMax

TMin

2 of 25

Problem 2. (11 points):

Consider the following 7-bit floating point representation based on the IEEE floating point format:

• There is a sign bit in the most significant bit.

• The next 3 bits encode the exponent. The exponent bias is 3.

• The last 3 bits encode the significand.

• The representation encodes numbers of the form:V = (−1)s ×M × 2E , whereM is the significand
andE the integer value of the exponent.

• The rounding mode is round-to-even.

Please fill in the table below. You do not have to fill in boxes with ”——” in them.If a number is NAN or
infinity, you may disregard theM ,E, andV fields below.However, fill the Description and Binary fields
with valid data.
Here are some guidelines for each field:

• Description - A verbal description if the number has a special meaning

• Binary - Binary representation of the number

• M - Significand (same as theM in the formula above)

• E - Exponent (same as theE in 2E)

• V - Fractional Value represented

Please fill theM , E, and V fields below with rational numbers (fractions) rather than decimals or
binary decimals

Description Binary M E V

—— 0 101 010

1 7
8

1 111 111

1 5
8 + 1

Farthest from zero NegativeNormalized

Closest to zero NegativeDenormalized

3 of 25

Problem 3. (10 points):

This problem tests your understanding of assembly code, control flow and multidimensional array layout.
Consider the following assembly code for a procedureloopy :

loopy:
pushl %ebp
movl %esp, %ebp
pushl %esi
pushl %ebx
movl 8(%ebp), %ebx
movl $1, %edx
movl $0, %ecx
cmpl %ebx, %ecx
jge .L33
movl $arr, %esi

.L35:
leal 0(,%ecx,8), %eax
addl %ecx, %eax
imull (%esi,%eax,4), %edx
incl %ecx
cmpl %ebx, %ecx
jl .L35

.L33:
movl %edx, %eax
popl %ebx
popl %esi
popl %ebp
ret

A. For each register listed, indicate which C variable(s) from the C source on the next page (i, tmp,
arr, n it can hold during the lifetime of the function. If the register is not used to hold a variable on the
next page, then write in “none.” Note that there is not necessarily a one-to-one correspondence between
variables and registers.

%eax

%ebx

%ecx

%edx

%esi

%edi

%ebp

4 of 25 Continued . . .

(Question 3 cont’d)

B. Based on the assembly code, fill in the blanks below inloopy ’s C source code. (Note: you may only
use symbolic variables from the source code in your expressions below. Donotuse register names.)

int arr[5][____];

int loopy(int n)
{

int i;
int tmp = ____;

for(i = 0; __________; ______)
{

tmp = ___________________arr[____][0];

}

return _______;
}

5 of 25

Problem 4. (5 points):

Consider the following C declarations:

typedef struct
{

union {
char d;
short s;

} u;
char c;
double *dptr;
char buf[2];

} final;

Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for structs of
typefinal . Mark off and label the areas for each individual element (arrays and unions may be labeled as
a single element).Cross hatch the parts that are allocated, but not used, and be sure to clearly indicate
the end of the structure. Assume the Linux alignment rules discussed in class.

final:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
+--+
| |
+--+

What would the following program print out?

int main()
{

printf("%d\n",sizeof(final));
}

Output:

6 of 25

Problem 5. (12 points):

In this problem, we will compare the best-case and worst-case scenarios for a memory access in a virtual
memory subsystem. You will want to pay careful attention to the following information about the available
features of the subsystem:

• No hardware caches (besides a Translation Lookaside Buffer) are present.

• The system uses a3-Level Page Table. The page directory (1st level page table) address is stored as a
physical address in a special register on the processor. The page directory is always in main memory.
All page tables store physical addresses.

• TheTranslation Lookaside Buffer (TLB) takes1nsto query.

• An access to main memorygiven a physical address costs20ns.

• A page faultcosts6ms. After a page fault, the page’s address translation is inserted into the TLB.

• Assume that the processorrestarts the address translationafter a page fault.

1. What is thebest casedata lookup time?NOTE: This is the time that elapses between when the
processor presents a virtual address to the memory subsystem and when the word at that address has
been loaded/stored to/from a register.

Answer:

____________ ms __________ ns

2. If the second level page-table is in main memory, what is theworst casedata lookup time? Assume
no individual page faults more than once (for example, other processes will not interfere with the
memory access).

Answer:

____________ ms __________ ns

7 of 25

Problem 6. (8 points):

The following problem deals with memory allocation schemes. You have seen several ways to manage heap
blocks. This problem deals with the buddy allocation scheme. In the buddy scheme, the heap starts out as
one large free block. During allocation, blocks are split in half until a minimum-sized block that can satisfy
the request is created. Each pair created by a split are called ”buddies.” A free block canonly be coalesced
with its buddy. For this problem, you mayignore block headers and footers.
In this problem, the valid block sizes are 32, 16, 8, and 4 bytes. As an example, imagine the heap starts as an
empty 32-byte block. Suppose a request is made for 7 bytes. The heap will be split into two 16-byte blocks.
The rightmost of these two 16-byte blocks will then be split into two 8-byte blocks. The rightmost of these
two 8-byte blocks will be used to store the 7 bytes requested.
Your job:

• Draw the state of the heap bymarking the boundaries of allocated and free blocksexisting in the
heap after the following trace of function calls.
• If a block is allocated, mark which variable below stores a pointer to that block.
• If a block is free, mark it with the letter ’X’.
• If you have a choice about which block to allocate a request to, use the rightmost block.

Note: you must have a vertical bar to mark each block boundary, as well as a letter in each byte indicating
its allocated state.

a = malloc(12);
b = malloc(12);
free(a);
c = malloc(5);
d = malloc(3);
e = malloc(4);
free(c);
f = malloc(4);
free(d);

Workspace (not graded):

0 4 8 12 16 20 24 28

0 4 8 12 16 20 24 28

0 4 8 12 16 20 24 28

Graded Solution:

0 4 8 12 16 20 24 28

8 of 25

Problem 7. (25 points):

You have been assigned the task of optimizing (the assembly code for) the doubly recursive fibonacci func-
tion. For some unknown reason, the code must remain doubly recursive, but otherwise you are free to
optimize it however you wish. Among the many possibilities, you should do at least do things. First, don’t
construct the stack frame unless absolutely necessary. Second, pass arguments in registers (e.g.,%eax), not
on the stack. The resulting code should run much faster and be much smaller than gcc’s code (even when
-O4 is turned on).
Implementing the second suggestion requires that the calling convention be changed. So, in order to encap-
sulate this change,fib should obey the calling convention to callers and needs to be changed to callmyfib
with the new calling convention.
To help you get started we include the assembly output of gcc for the following C program:

#include <stdio.h>

int fib(int n)
{

return myfib(n);
}

int myfib(int n)
{

if (n < 3) {
return 1;

}
return myfib(n-2)+myfib(n-1);

}

main(int argc, char** argv)
{

int x = atoi(argv[1]);
printf("fib(%d) = %d\n", x, fib(x));

}

9 of 25 Continued . . .

(Question 7 cont’d)

The important pieces of the assembly code are:

_fib:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
movl 8(%ebp),%eax
addl $-12,%esp
pushl %eax
call _myfib

L6:
movl %ebp,%esp
popl %ebp
ret
.align 4

_myfib:
pushl %ebp
movl %esp,%ebp
subl $16,%esp
pushl %esi
pushl %ebx
movl 8(%ebp),%ebx
cmpl $2,%ebx
jle L12
addl $-12,%esp
leal -2(%ebx),%eax
pushl %eax
call _myfib

L7:
movl %eax,%esi
addl $-12,%esp
leal -1(%ebx),%eax
pushl %eax
call _myfib

L8:
addl %esi,%eax
jmp L16
.align 4

L12:
movl $1,%eax

L16:
leal -24(%ebp),%esp
popl %ebx
popl %esi
movl %ebp,%esp
popl %ebp
ret

10 of 25 Continued . . .

(Question 7 cont’d)

A. Show the state of the stack when the functionfib on the previous page has been invoked with4 as the
argument andmyfib(2) has been entered for the second time. If they are known, use actual values in your
answer, otherwise use register names.

L7

4

11 of 25 Continued . . .

(Question 7 cont’d)

B. Implement a new version ofmyfib according to the suggestions above. The opcodes for a suggested
final solution are listed below, you can fill in the operands (or cross these out and enter your own solution).
Hint: we strongly suggest that you follow the framework below.

_myfib:
cmpl

jle

pushl

leal

call

L7:
popl

pushl

leal

call

L8:
addl

addl

ret

L1:
movl $1,%eax
ret

12 of 25 Continued . . .

(Question 7 cont’d)

C. Change the site infib where functionmyfib is called to reflect the new calling convention. Indicate
any and all changes here.

_fib:
pushl %ebp
movl %esp,%ebp
subl $8,%esp
movl 8(%ebp),%eax
addl $-12,%esp
pushl %eax
call _myfib

L6:
movl %ebp,%esp
popl %ebp
ret

D. Show the state of the stack whenyour optimized version of the program is invoked with 4 as the argument
and myfib(2) has been entered for the second time. If they are known, use actual values in your answer,
otherwise register names.

L7

13 of 25

Problem 8. (12 points):

This problem tests your understanding of concurrent programming and exceptional control flow. For each
of the following programs, listall possible outputs in a comma separated list. Assume that syscalls execute
without error.

Program 1

int i = 0;

int main()
{

if(fork() == 0)
i++;

else
i+=2;

printf("%d",i);
}

All possible outputs:

Program 2

int i = 0;

int main()
{

if(fork() == 0)
i++;

else
{

i+=3;
wait(NULL);

}
printf("%d",i);

}

All possible outputs:

14 of 25 Continued . . .

(Question 8 cont’d)

Program 3

int i = 0;

void *doit(void *vargp)
{

pthread_detach(pthread_self());
i++;

}

int main()
{

pthread_t tid;
pthread_create(&tid, NULL, doit, NULL);
i++;
printf("%d",i);

}

All possible outputs:

Program 4

int i = 0;

void *doit(void *vargp)
{

i = i + 5;
}

int main()
{

pthread_t tid;
ptr = &i;
pthread_create(&tid, NULL, doit, NULL);
i = i + 3;
pthread_join(tid, NULL);
printf("%d",i);

}

All possible outputs:

15 of 25 Continued . . .

(Question 8 cont’d)

Program 5

void *doit(void *vargp)
{

int i = 3;
int *ptr = (int*)vargp;
(*ptr)++;

}

int main()
{

int i = 0;
pthread_t tid;
pthread_create(&tid, NULL, doit, (void*)&i);
pthread_join(tid,NULL);
i = i + 4;
printf("%d",i);

}

All possible outputs:

16 of 25

Problem 9. (15 points):

This question tests your understanding about basic POSIX standard Berkeley sockets interface. There’s
an IRC server running on 128.193.0.40, port 6667. (IRC stands for Internet Relay Chat, one of the most
prevalent forms of online chat forum) Assume that the capitalized sys-calls below check for errors returned
by their corresponding actual sys-calls. You might find these definitions helpful.

int Sem_init(sem_t *sem, int pshared, unsigned int value)
int Open(const char *pathname, int flags)
int Close(int fd);
ssize_t Read(int fd, void *buf, size_t count)
ssize_t Write(int fd, const void *buf, size_t count)

int Socket(int domain, int type, int protocol)
int Bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen)
int Listen(int s, int backlog)
int Connect(int sockfd, const struct sockaddr *serv_addr,

socklen_t addrlen)
int Accept(int s, struct sockaddr *addr, socklen_t *addrlen)

int Select(int n, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout)

int Pthread_create(pthread_t th, pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)

int Pthread_detach(pthread_t th);

int Inet_aton(const char *cp, struct in_addr *inp)
FD_CLR(int fd, fd_set *set)
FD_ISSET(int fd, fd_set *set)
FD_SET(int fd, fd_set *set)
FD_ZERO(fd_set *set)

unsigned short htons(unsigned short hostshort)
unsigned long htonl(unsigned long hostlong)
unsigned short ntohs(unsigned short netshort)
unsigned long ntohl(unsigned long netlong)

Part 1

You’re given aclient that connects to the server on the next page. Fill in the blanks with the appropriate
code.

#define MAXLINE 1024
#define IRCLINE 512 /* IRC messages are at most 512 bytes */
#define STDIN_FILENO 0
typedef SA struct sockaddr;

17 of 25 Continued . . .

(Question 9 cont’d)

int main(int argc, char **argv) /* Client Main */
{

int fd, bytes;
struct sockaddr_in srv_addr;
char buf[MAXLINE];
fd_set read_set, ready_set;

fd = Socket(AF_INET, SOCK_STREAM, 0);
bzero((char *) &srv_addr, sizeof(srv_addr));
srv_addr.sin_family = AF_INET;

srv_addr.sin_port = _______________;
Inet_aton("128.193.0.40", &srv_addr.sin_addr);

__;

__;

__;

__;
while (1) {

ready_set = read_set;

Select(_______________, _______________, NULL, NULL, NULL);

if (FD_ISSET(_______________, &ready_set)) {

bytes = Read(_______________, (void *)buf, IRCLINE);
if (!bytes) {

Close(fd);
exit(0); /* EOF - quits client */

}
buf[bytes] = ’\r’; /* IRC protocol mandates each line */
buf[bytes+1] = ’\n’; /* being terminated by \r\n */
buf[bytes+2] = ’\0’;

Write(_______________, (const void *)buf, strlen(buf));
}
if (FD_ISSET(_______________, &ready_set)) {

bytes = Read(_______________, (void *)buf, MAXLINE-1);
buf[bytes] = ’\0’;
printf ("%s", buf);

}
}

}

18 of 25 Continued . . .

(Question 9 cont’d)

Part 2

This simplified IRCserver accepts connections from the client, logs the connection request, and proceeds
to process the request. It keeps track of all the currently connected file descriptors in a global array.

The following code comes from the IRC server. You may assume that the helper functions work as ex-
pected, no buffer overflows occur, all signals are handled appropriately, and MAXBUDDY is never ex-
ceeded. Again, fill in the blanks below.

int buddy_fd[MAXBUDDY];
sem_t lock;

int main(int argc, char **argv) /* Server Main */
{

int listenfd, n;
int cli_len = sizeof(struct sockaddr_in);
struct sockaddr_in srv_addr, cli_addr;
pthread_t tid;

init_slot(); /* Initialize each element in buddy_fd to -1 */

__;
listenfd = Socket(AF_INET, SOCK_STREAM, 0);
bzero((char *) &srv_addr, sizeof(srv_addr));
srv_addr.sin_family = AF_INET;

srv_addr.sin_port = _______________;
Inet_aton("128.193.0.40", &srv_addr.sin_addr);

__;

__;
while(1)
{

n = avail_slot(); /* Returns a slot in buddy_fd which is -1 */

buddy_fd[n] = Accept(listenfd, (struct sockaddr *)&cli_addr,
&cli_len);

Pthread_create(&tid, NULL, irc_thread, &(buddy_fd[n]));
}

}

19 of 25 Continued . . .

(Question 9 cont’d)

void *irc_thread(void *connfd_p)
{

char buf[MAXLINE];
int fd, connfd = *((int *)connfd_p);

__;

format_log_entry(buf, connfd); /* Fills buf with null */
/* terminated string */

fd = Open("connection.log", O_APPEND);

P(&lock);
Write(fd, buf, _________________________);
V(&lock);

Close(fd);

process_request(connfd); /* Sends message to users in the */
/* same chatroom (buddy_fd) */

Close(connfd);

release_slot(connfd); /* Set connfd’s slot in buddy_fd to -1 */

return NULL;
}

20 of 25

Problem 10. (4 points):

After successfully writing your ownmallocandfree in Lab 6, you want to make it work in a multi-threaded
environment. Consider the following extract of an over-simplified version ofmallocandfree.

#define PRED(p) *((char **)(p + 4))
#define SUCC(p) *((char **)p)
#define SIZE(p) *((int *)(p - 4))

char *free_head;

void insert_free_block(char *bp) {

PRED(bp) = NULL;

SUCC(bp) = free_head;

free_head = bp;
}

char *remove_free_block(int size) {
char *free_tmp = free_head;

while (free_tmp != NULL && SIZE(free_tmp) < size) {

free_tmp = SUCC(free_tmp);
}

if (free_tmp == NULL)
return NULL;

if (PRED(free_tmp) != NULL) {
SUCC(PRED(free_tmp)) = SUCC(free_tmp);

} else {
free_head = SUCC(free_tmp);

}

if (SUCC(free_tmp) != NULL) {
PRED(SUCC(free_tmp)) = PRED(free_tmp);

}

return free_tmp;
}

21 of 25 Continued . . .

(Question 10 cont’d)

char *malloc(size s) {

char *bp;

while ((bp = remove_free_block(s)) == NULL) {
extend_heap();

}

set_alloc_bit(bp);

return bp;
}

void free(char *bp) {

unset_alloc_bit(bp);

coalease(bp);

insert_free_block(bp);

}

Incorporating semaphores only in themallocandfree functions, make the entire package work even when
multiple threads call malloc and free. You may assume the omitted functions work in a single threaded
environment. Also,P() andV() utilize a global mutexlock initialized to 1. Points will be deducted for
unnecessary code.

22 of 25

Problem 11. (6 points):

The following table gives the parameters for a number of different caches, wherem is the number of physical
address bits,C is the cache size (number of data bytes),B is the block size in bytes,E is the number of lines
per set,S is the number of cache sets,t is the number of tag bits,s is the number of set index bits, andb is
the number of block offset bits.
Your task is to fill in the missing fields in the table.

Cache m C B E S t s b

1 32 8 1 21 8 3

2 32 2048 128 23 7 2

3 32 1024 2 8 64 1

4 32 1024 2 16 23 4

23 of 25

Problem 12. (9 points):

Consider the following code for the next problem:

#define N 1000
#define TRUE 1
#define FALSE 0

int graph[N][N];

int isEdge(int x, int y) {
if(graph[x][y] > 0)

return TRUE;
else

return FALSE;
}

int numNodes() {
return N;

}

int numEdges() {
int cnt = 0;
int i, j;

for(i = 0;i < numNodes(); i++) {
for(j = 0;j < numNodes(); j++) {

if(graph[j][i] > 0)
cnt += 1;

}
}
return cnt>>1;

}

24 of 25 Continued . . .

(Question 12 cont’d)

This problem asks you to find ways to increase the speed of the above piece of code, which counts the
number of edges in an undirected, simple graph. A simple graph is a graph in which there are no self loops,
and in which there is at most one edge between any two nodes. We will be representing graphs in adjacency
matrix form. In this form, if there is an edge between nodesi and j, thengraph[i][j] = 1 . For
example the adjacency matrix of a graph with two nodes and an edge between them is:(

01
10

)

Describe three ways in which you couldsignificantly improve the running time of this code and explain
why they are applicable. Your code must correctly count the number of edges in a simple, undirected graph
in adjacency matrix form. Other than that, you may propose changes to any aspect of the code you please.

Technique 1:

Why it is applicable:

Technique 2:

Why it is applicable:

Technique 3:

Why it is applicable:

25 of 25

