
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Week – Day 3!

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Internals

 The heap consists of blocks of memory
 Some are allocated

 Some are free

 What is responsible for tracking allocated blocks?

 What is responsible for tracking free blocks?

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Utilization

 The malloc package is responsible for tracking free blocks
 Blocks are tracked in a free list

 Malloc tries reusing these blocks to satisfy future allocation
requests

 mm-baseline uses an implicit list
 What is its memory utilization in the lab?

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a block

 What fit algorithm does mm-baseline use?

 What other fit algorithms could be used?

 If you switch from an implicit to explicit list
representation, how does this change memory
utilization?

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a Best Block

 You have implemented explicit list representation
 You were using best fit with explicit lists

 You experiment with segregated lists and best fit
 Is there a better fit for a given allocation?

 What advantage(s) does segregated lists provide?

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structuring (meta)Data

 There are (at least) two different types of blocks:
 Allocated and free

 What data is common between blocks?

 What data might a free block need?

 Is there any unused space in free blocks?

 How can we overlap two different types of data at the
same location?

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);

write_header(block_next, 0, true);

4 4 4 4 6 460 00

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);

write_header(block_next, 0, true);

4 4 4 4 6 46 40 00

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Here is a free block based on lectures 19 and 20
 Explicit pointers (will be well-defined see writeup and Piazza)

 Optional boundary tags

 If you make changes to your design beyond this
 Draw it out.

 If you have bugs,
pictures can help the staff help you

Size

Unallocated

b0

Size b0

1 word

Free
Block

Next

Prev

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

 Remember that measurements inform insights.
 Add temporary code to understand aspects of malloc

 Code can violate style rules or 128 byte limits, because it is
temporary

 Particularly important to develop insights into
performance before making changes
 What is expensive throughput-wise?

 How much might a change benefit utilization?

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation example

 Looping in find_fit takes most of the time

 How efficient is your code? How might you know?
 Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)

{

block_t *block;

for (block = heap_listp; get_size(block) > 0;

block = find_next(block))

{

if (!(get_alloc(block)) && (asize <= get_size(block)))

{

return block;

}

}

return NULL; // no fit found

}

call_count++;

block_count++;

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation cont.

 What size of requests?
 How many 8 bytes or less?

 How many 16 bytes or less?

 What other sizes?

 What else could you measure? Why?

 Remember that although the system’s performance
varies
 The mdriver’s traces are deterministic

 Measured results should not change between runs

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use tools

 Write your own – mm_checkheap()
 What conditions are true in a valid heap?

 Discuss.

 Use gdb
 Sometimes augmented with checkheap or printfs

 Always valuable insights

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB DEMO

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes

 Malloc library returns a block
 mdriver writes bytes into payload (using memcpy)

 mdriver will check that those bytes are still present

 If malloc library has overwritten any bytes, then report garbled bytes

 Now what?

 The mm_checkheap call is catching it right?

 If not, we want to find the garbled address and watch it

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes and gdb

 Get out a laptop

 Login to shark machine

 wget http://www.cs.cmu.edu/~213/activities/recML.tar

 tar xf recML.tar

 This is an explicit list mdriver with a bug.
 No source code is provided.

http://www.cs.cmu.edu/~213/activities/recML.tar

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise

 gdb --args ./mdriver-garb -c ./traces/syn-array-short.rep

(gdb) r

// Sample output follows

Throughput targets: min=6528, max=11750, benchmark=13056

Malloc size 9904 on address 0x800000010.

...

ERROR [trace ././traces/syn-array-short.rep, line 12]:

block 0 has 8 garbled bytes, starting at byte 0

...

Terminated with 2 errors

[Inferior 1 (process 13470) exited normally]

(gdb)

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise cont.

 What is the first address that was garbled?
 Use gdb watch to find out when / what garbled it.

(gdb) watch * 0x800000010

(gdb) run

// Keep continuing through the breaks:

// mm_init()

// 4 x memcpy

Hardware watchpoint 1: *0x800000010

Old value = -7350814

New value = 0

0x00000000004041b7 in mm_malloc ()

We just broke in
after overwriting

