
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Week – Day 3!

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Internals

 The heap consists of blocks of memory
 Some are allocated

 Some are free

 What is responsible for tracking allocated blocks?

 What is responsible for tracking free blocks?

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

List Utilization

 The malloc package is responsible for tracking free blocks
 Blocks are tracked in a free list

 Malloc tries reusing these blocks to satisfy future allocation
requests

 mm-baseline uses an implicit list
 What is its memory utilization in the lab?

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a block

 What fit algorithm does mm-baseline use?

 What other fit algorithms could be used?

 If you switch from an implicit to explicit list
representation, how does this change memory
utilization?

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a Best Block

 You have implemented explicit list representation
 You were using best fit with explicit lists

 You experiment with segregated lists and best fit
 Is there a better fit for a given allocation?

 What advantage(s) does segregated lists provide?

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Structuring (meta)Data

 There are (at least) two different types of blocks:
 Allocated and free

 What data is common between blocks?

 What data might a free block need?

 Is there any unused space in free blocks?

 How can we overlap two different types of data at the
same location?

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);

write_header(block_next, 0, true);

4 4 4 4 6 460 00

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);

write_header(block_next, 0, true);

4 4 4 4 6 46 40 00

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Here is a free block based on lectures 19 and 20
 Explicit pointers (will be well-defined see writeup and Piazza)

 Optional boundary tags

 If you make changes to your design beyond this
 Draw it out.

 If you have bugs,
pictures can help the staff help you

Size

Unallocated

b0

Size b0

1 word

Free
Block

Next

Prev

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

 Remember that measurements inform insights.
 Add temporary code to understand aspects of malloc

 Code can violate style rules or 128 byte limits, because it is
temporary

 Particularly important to develop insights into
performance before making changes
 What is expensive throughput-wise?

 How much might a change benefit utilization?

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation example

 Looping in find_fit takes most of the time

 How efficient is your code? How might you know?
 Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)

{

block_t *block;

for (block = heap_listp; get_size(block) > 0;

block = find_next(block))

{

if (!(get_alloc(block)) && (asize <= get_size(block)))

{

return block;

}

}

return NULL; // no fit found

}

call_count++;

block_count++;

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation cont.

 What size of requests?
 How many 8 bytes or less?

 How many 16 bytes or less?

 What other sizes?

 What else could you measure? Why?

 Remember that although the system’s performance
varies
 The mdriver’s traces are deterministic

 Measured results should not change between runs

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use tools

 Write your own – mm_checkheap()
 What conditions are true in a valid heap?

 Discuss.

 Use gdb
 Sometimes augmented with checkheap or printfs

 Always valuable insights

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB DEMO

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes

 Malloc library returns a block
 mdriver writes bytes into payload (using memcpy)

 mdriver will check that those bytes are still present

 If malloc library has overwritten any bytes, then report garbled bytes

 Now what?

 The mm_checkheap call is catching it right?

 If not, we want to find the garbled address and watch it

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes and gdb

 Get out a laptop

 Login to shark machine

 wget http://www.cs.cmu.edu/~213/activities/recML.tar

 tar xf recML.tar

 This is an explicit list mdriver with a bug.
 No source code is provided.

http://www.cs.cmu.edu/~213/activities/recML.tar

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise

 gdb --args ./mdriver-garb -c ./traces/syn-array-short.rep

(gdb) r

// Sample output follows

Throughput targets: min=6528, max=11750, benchmark=13056

Malloc size 9904 on address 0x800000010.

...

ERROR [trace ././traces/syn-array-short.rep, line 12]:

block 0 has 8 garbled bytes, starting at byte 0

...

Terminated with 2 errors

[Inferior 1 (process 13470) exited normally]

(gdb)

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise cont.

 What is the first address that was garbled?
 Use gdb watch to find out when / what garbled it.

(gdb) watch * 0x800000010

(gdb) run

// Keep continuing through the breaks:

// mm_init()

// 4 x memcpy

Hardware watchpoint 1: *0x800000010

Old value = -7350814

New value = 0

0x00000000004041b7 in mm_malloc ()

We just broke in
after overwriting

