
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers – Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2nd Lecture, May 24, 2017

Instructors:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waitlist questions

 15-213: Amy Weis alweis@andrew.cmu.edu

 18-213: Zara Collier (zcollier@andrew.cmu.edu)

 15-513: Amy Weis alweis@andrew.cmu.edu

 Please don’t contact the instructors with waitlist
questions.

mailto:alweis@andrew.cmu.edu
mailto:alweis@andrew.cmu.edu

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bootcamp

 Noon Friday in GHC4215

 Linux basics

 Git basics

 Things like:
 How to ssh to the shark machines from windows or linux

 How to setup a directory on afs with the right permissions

 How to initialize a directory for git

 The basics of using git as you work on the assignment

 Basic linux tools like: tar, make, gcc, …

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First Assignment: Data Lab

 Datalab is out this afternoon

 Due: Thursday, 6/1 at 11:59pm

 Absolute last time to turn in: Friday, 6/2 at 11:59pm

 Goto theproject.zone soon and read the handout carefully

 Start early

 Don’t be afraid to ask for help

 Piazza

 Office hours

 Walkin tutoring

 Based on lectures 2, 3 and 4

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits

 Each bit is 0 or 1

 By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)

 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in binary

 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

 Byte = 8 bits
 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And

 A&B = 1 when both A=1 and B=1

Or

 A|B = 1 when either A=1 or B=1

Not

 ~A = 1 when A=0

Exclusive-Or (Xor)

 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~0100 00012 → 1011 11102

 ~0x00 → 0xFF

 ~0000 00002 → 1111 11112

 0x69 & 0x55 → 0x41

 0110 10012 & 0101 01012 → 0100 00012

 0x69 | 0x55 → 0x7D

 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

 Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41 → 0x00

 !0x00 → 0x01

 !!0x41→ 0x01

 0x69 && 0x55 → 0x01

 0x69 || 0x55 → 0x01

 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

short int x = 15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X)  xw1 2
w1

 xi 2
i

i0

w2

B2U(X)  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values

 UMin = 0

000…0

 UMax = 2w – 1

111…1

 Two’s Complement Values

 TMin = –2w–1

100…0

 TMax = 2w–1 – 1

011…1

 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range

 UMax = 2 * TMax + 1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>

 Declares constants, e.g.,

 ULONG_MAX

 LONG_MAX

 LONG_MIN

 Values platform specific

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative
values

 Uniqueness
 Every bit pattern represents

unique integer value

 Each representable integer has
unique bit encoding

  Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

 2’s Comp.  Unsigned
 Ordering Inversion

 Negative  Big Positive

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

 Constants
 By default are considered to be signed integers

 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned vs. Signed: Easy to Make Mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

 Task:
 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:

 X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 1 1 1 0

-32 16 8 4 2 1

1 1 1 0 1 0-10 =

Positive number Negative number

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation

 Task:
 Given k+w-bit signed or unsigned integer X

 Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
 Drop top k bits:

 X  = xw–1 , xw–2 ,…, x0

• • •

• • •X 
w

X • • • • • •

wk

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)
 Unsigned: zeros added

 Signed: sign extension

 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated

 Result reinterpreted

 Unsigned: mod operation

 Signed: similar to mod

 For small numbers yields expected behavior

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example

 Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

 Your job is to develop the driver software.

1500

printf(“%d\n”, getValue());

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Fake real world example

 Acme, Inc. has developed a state of the art voltmeter they
are connecting to a pc. It is precise to the millivolt and
does not drain the unit under test.

 Your job is to develop the driver software.

26076

printf(“%d\n”, getValue());

wtf?

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

 50652 0000c5dc

 1500 000005dc

 9692 000025dc

 26076 000065dc

 17884 000045dc

 42460 0000a5dc

 34268 000085dc

 50652 0000c5dc

printf(“%d\n”, getValue());

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets run some tests

 50652 0000c5dc

 1500 000005dc

 9692 000025dc

 26076 000065dc

 17884 000045dc

 42460 0000a5dc

 34268 000085dc

 50652 0000c5dc

int x=getValue(); printf(“%d %08x\n”,x, x);

Those darn

engineers!

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

1500

int x=getValue();

x=(x & 0x0fff);

printf(“%d\n”,x);

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Only care about least significant 12 bits

2596

int x=getValue();

x=x(&0x0fff);

printf(“%d\n”,x);

printf(“%x\n”, x);

a24

hmm?

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Must sign extend

-1500

int x=getValue();

x=(x&0x007ff)|(x&0x0800?0xfffff000:0);

printf(“%d\n”,x);

There is a better way.

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Because you graduated from 213

0

int x=getValue();

x=(x&0x007ff)|(x&0x0800?0xfffff000:0);

printf(“%d\n”,x);

huh?

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lets be really thorough

int x=getValue();

x=(x&0x00fff)|(x&0x0800?0xfffff000:0);

printf(“%d\n”,x);

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

