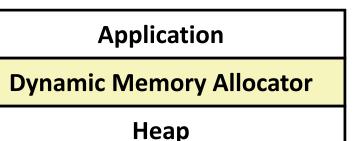
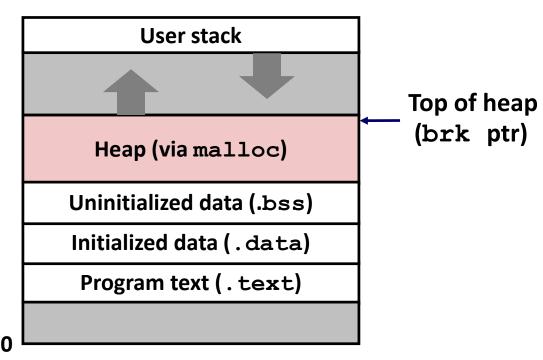
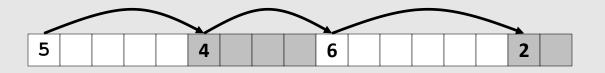
Dynamic Memory Allocation: Advanced Concepts

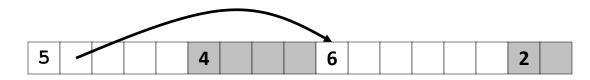

15-213: Introduction to Computer Systems 20th Lecture, July 12, 2017


Instructor:

Brian Railing

Dynamic Memory Allocation


- Programmers use dynamic memory allocators (such as malloc) to acquire VM at run time.
 - For data structures whose size is only known at runtime.
- Dynamic memory allocators manage an area of process virtual memory known as the heap.



Last Lecture: Keeping Track of Free Blocks

Method 1: Implicit list using length—links all blocks

Method 2: Explicit list among the free blocks using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes

Method 4: Blocks sorted by size

 Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

Summary: Implicit Lists

Implementation: very simple

Allocate cost:

linear time worst case

Free cost:

- constant time worst case
- even with coalescing

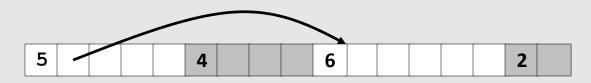
Memory usage:

- will depend on placement policy
- First-fit, next-fit or best-fit
- Not used in practice for malloc/free because of lineartime allocation
 - used in many special purpose applications

However, the concepts of splitting and boundary tag coalescing are general to *all* allocators

Today

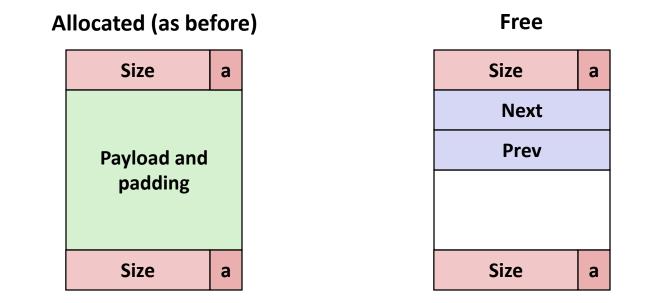
Explicit free lists


- Segregated free lists
- Garbage collection
- Memory-related perils and pitfalls

Keeping Track of Free Blocks

Method 1: Implicit free list using length—links all blocks

Method 2: Explicit free list among the free blocks using pointers



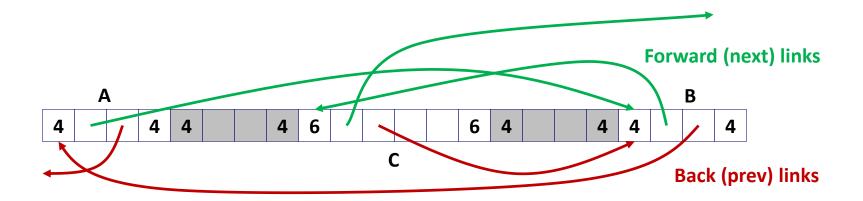
- Method 3: Segregated free list
 - Different free lists for different size classes

Method 4: Blocks sorted by size

 Can use a balanced tree (e.g. Red-Black tree) with pointers within each free block, and the length used as a key

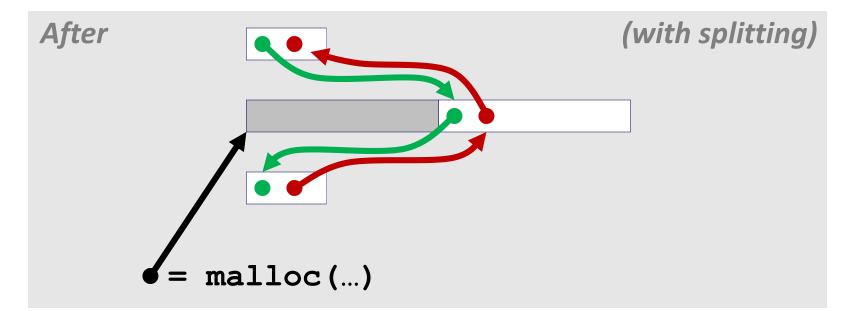
Explicit Free Lists

Maintain list(s) of *free* blocks, not all blocks


- The "next" free block could be anywhere
 - So we need to store forward/back pointers, not just sizes
- Still need boundary tags for coalescing
- Luckily we track only free blocks, so we can use payload area

Explicit Free Lists

Logically:


Physically: blocks can be in any order

Allocating From Explicit Free Lists

conceptual graphic

Freeing With Explicit Free Lists

- Insertion policy: Where in the free list do you put a newly freed block?
- Unordered
 - LIFO (last-in-fir Aside: Premature Optimization

Don't!

- Insert free
- FIFO (first-in-fi
 - Insert free
- Pro: simple and
- Con: studies su

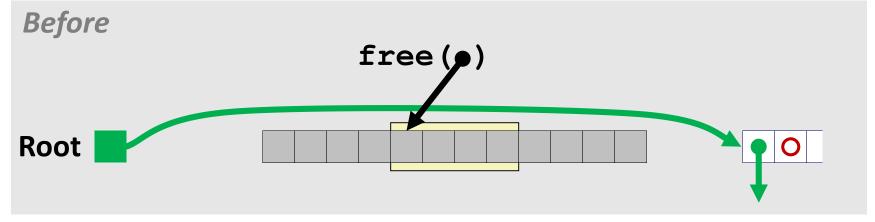
Address-ordere

Insert freed blo

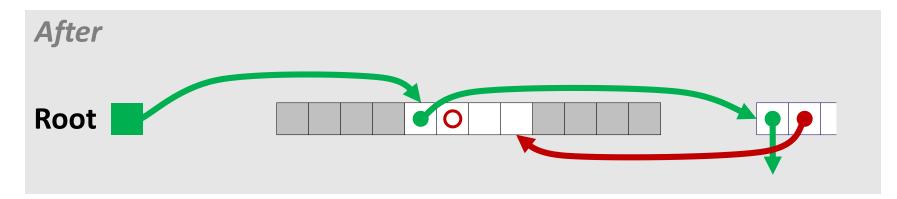
addr(prev) < aaar(curr) < aaar(next)

- Con: requires search
- Pro: studies suggest fragmentation is lower than LIFO/FIFO

Freeing With Explicit Free Lists

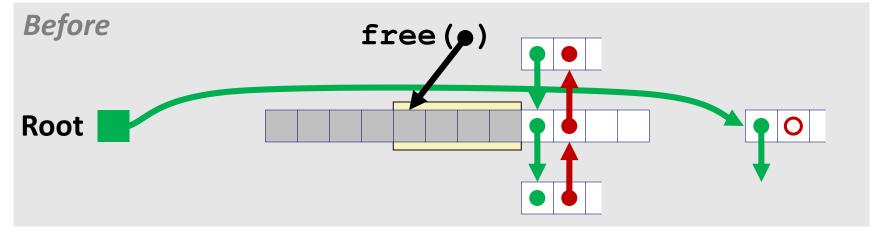

- Insertion policy: Where in the free list do you put a newly freed block?
- Unordered
 - LIFO (last-in-first-out) policy
 - Insert freed block at the beginning of the free list
 - FIFO (first-in-first-out) policy
 - Insert freed block at the end of the free list
 - **Pro:** simple and constant time
 - *Con:* studies suggest fragmentation is worse than address ordered

Address-ordered policy

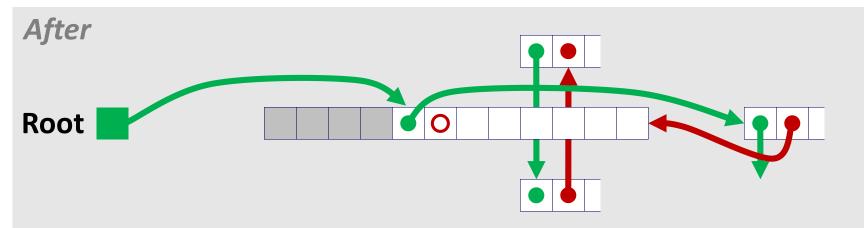

- Insert freed blocks so that free list blocks are always in address order: *addr(prev) < addr(curr) < addr(next)*
- Con: requires search
- Pro: studies suggest fragmentation is lower than LIFO/FIFO

Freeing With a LIFO Policy (Case 1)

conceptual graphic

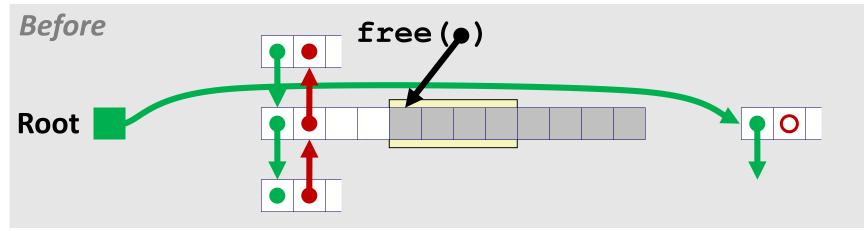


Insert the freed block at the root of the list

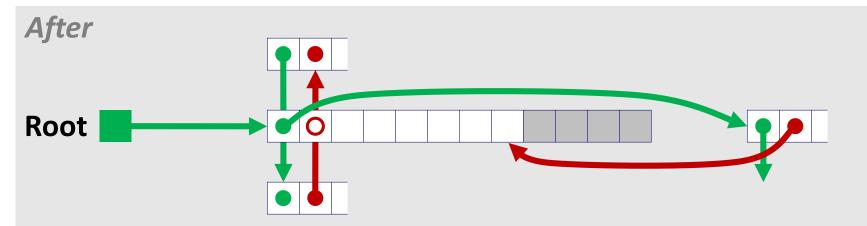


Freeing With a LIFO Policy (Case 2)

conceptual graphic

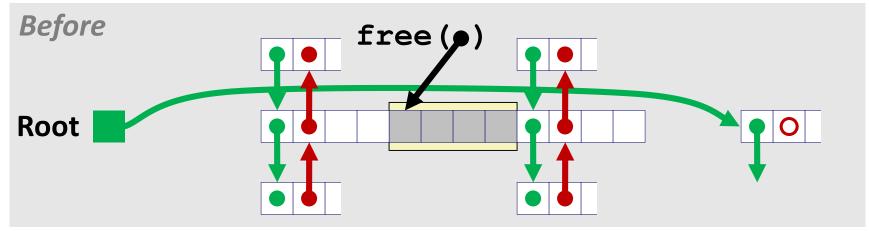


Splice out successor block, coalesce both memory blocks and insert the new block at the root of the list

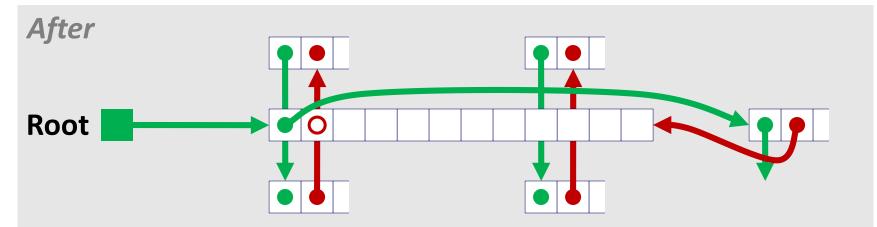


Freeing With a LIFO Policy (Case 3)

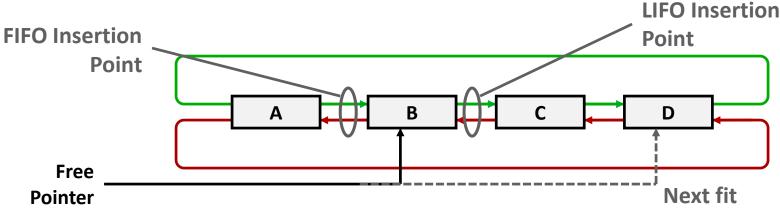
conceptual graphic



Splice out predecessor block, coalesce both memory blocks, and insert the new block at the root of the list



Freeing With a LIFO Policy (Case 4)


conceptual graphic

Splice out predecessor and successor blocks, coalesce all 3 memory blocks and insert the new block at the root of the list

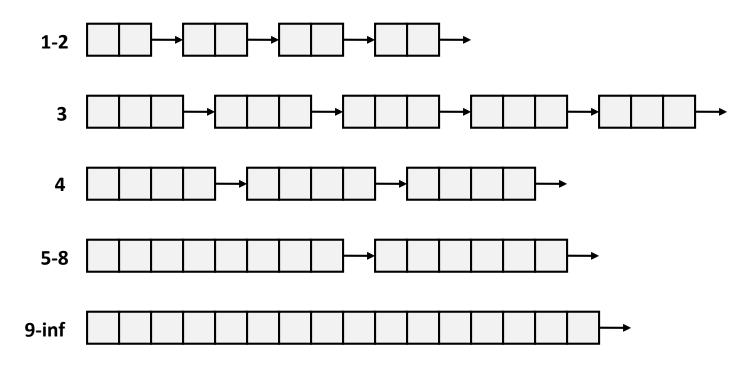
Some Advice: An Implementation Trick

- Use circular, doubly-linked list
- Support multiple approaches with single data structure
- First-fit vs. next-fit
 - Either keep free pointer fixed or move as search list
- LIFO vs. FIFO
 - Insert as next block (LIFO), or previous block (FIFO)

Explicit List Summary

Comparison to implicit list:

- Allocate is linear time in number of *free* blocks instead of *all* blocks
 - *Much faster* when most of the memory is full
- Slightly more complicated allocate and free since needs to splice blocks in and out of the list
- Some extra space for the links (2 extra words needed for each block)
 - Does this increase internal fragmentation?
- Most common use of linked lists is in conjunction with segregated free lists
 - Keep multiple linked lists of different size classes, or possibly for different types of objects


Today

Explicit free lists

- Segregated free lists
- Garbage collection
- Memory-related perils and pitfalls

Segregated List (Seglist) Allocators

Each *size class* of blocks has its own free list

Often have separate classes for each small size
 For larger sizes: One class for each two-power size

Seglist Allocator

Given an array of free lists, each one for some size class

To allocate a block of size n:

- Search appropriate free list for block of size m > n
- If an appropriate block is found:
 - Split block and place fragment on appropriate list (optional)
- If no block is found, try next larger class
- Repeat until block is found

If no block is found:

- Request additional heap memory from OS (using sbrk())
- Allocate block of n bytes from this new memory
- Place remainder as a single free block in largest size class.

Seglist Allocator (cont.)

To free a block:

Coalesce and place on appropriate list

Advantages of seglist allocators

- Higher throughput
 - log time for power-of-two size classes
- Better memory utilization
 - First-fit search of segregated free list approximates a best-fit search of entire heap.
 - Extreme case: Giving each block its own size class is equivalent to best-fit.

More Info on Allocators

 D. Knuth, "The Art of Computer Programming", 2nd edition, Addison Wesley, 1973

The classic reference on dynamic storage allocation

Wilson et al, "Dynamic Storage Allocation: A Survey and Critical Review", Proc. 1995 Int'l Workshop on Memory Management, Kinross, Scotland, Sept, 1995.

- Comprehensive survey
- Available from CS:APP student site (csapp.cs.cmu.edu)

Today

- **Explicit free lists**
- Segregated free lists
- Garbage collection
- Memory-related perils and pitfalls

Implicit Memory Management: Garbage Collection

 Garbage collection: automatic reclamation of heap-allocated storage—application never has to free

```
void foo() {
    int *p = malloc(128);
    return; /* p block is now garbage */
}
```

Common in many dynamic languages:

Python, Ruby, Java, Perl, ML, Lisp, Mathematica

Variants ("conservative" garbage collectors) exist for C and C++

However, cannot necessarily collect all garbage

Garbage Collection

- How does the memory manager know when memory can be freed?
 - In general we cannot know what is going to be used in the future since it depends on conditionals
 - But we can tell that certain blocks cannot be used if there are no pointers to them

Must make certain assumptions about pointers

- Memory manager can distinguish pointers from non-pointers
- All pointers point to the start of a block
- Cannot hide pointers

 (e.g., by coercing them to an int, and then back again)

Classical GC Algorithms

Mark-and-sweep collection (McCarthy, 1960)

Does not move blocks (unless you also "compact")

Reference counting (Collins, 1960)

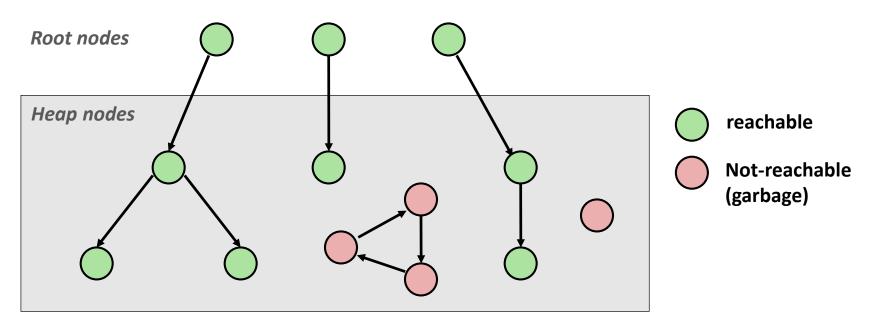
Does not move blocks (not discussed)

Copying collection (Minsky, 1963)

Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)

- Collection based on lifetimes
 - Most allocations become garbage very soon
 - So focus reclamation work on zones of memory recently allocated


For more information:

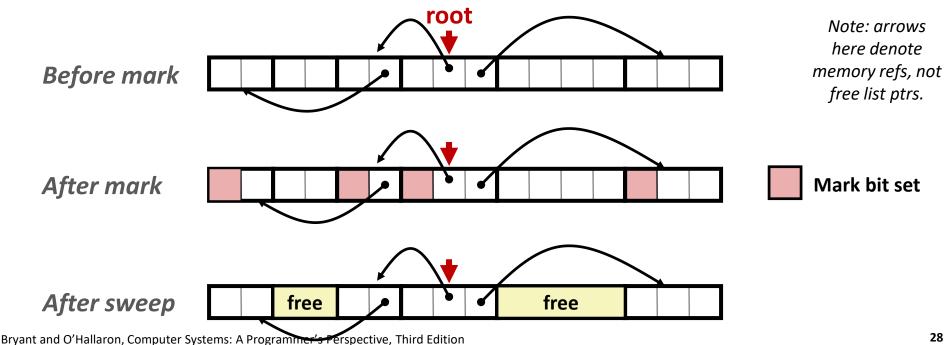
Jones and Lin, "Garbage Collection: Algorithms for Automatic Dynamic Memory", John Wiley & Sons, 1996.

Memory as a Graph

We view memory as a directed graph

- Each block is a node in the graph
- Each pointer is an edge in the graph
- Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, locations on the stack, global variables)

A node (block) is *reachable* if there is a path from any root to that node.


Non-reachable nodes are *garbage* (cannot be needed by the application)

Mark and Sweep Collecting

- Can build on top of malloc/free package
 - Allocate using **malloc** until you "run out of space"

When out of space:

- Use extra **mark bit** in the head of each block
- *Mark*: Start at roots and set mark bit on each reachable block
- **Sweep:** Scan all blocks and free blocks that are not marked

Assumptions For a Simple Implementation

Application

- **new(n):** returns pointer to new block with all locations cleared
- read(b,i): read location i of block b into register
- write(b,i,v): write v into location i of block b

Each block will have a header word

- addressed as b[-1], for a block b
- Used for different purposes in different collectors
- Instructions used by the Garbage Collector
 - is_ptr(p): determines whether p is a pointer
 - length (b): returns the length of block b, not including the header
 - get_roots(): returns all the roots

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return;
    if (markBitSet(p)) return;
    setMarkBit(p);
    for (i=0; i < length(p); i++)
        mark(p[i]);
    return;
}</pre>
```

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return;
    setMarkBit(p);
    for (i=0; i < length(p); i++)
       mark(p[i]);
    return;
}</pre>
```

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return; // if already marked -> do nothing
    setMarkBit(p);
    for (i=0; i < length(p); i++)
        mark(p[i]);
    return;
}</pre>
```

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return; // if already marked -> do nothing
    setMarkBit(p); // set the mark bit
    for (i=0; i < length(p); i++)
        mark(p[i]);
    return;
}</pre>
```

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return; // if already marked -> do nothing
    setMarkBit(p); // set the mark bit
    for (i=0; i < length(p); i++) // for each word in p's block
        mark(p[i]);
    return;
}</pre>
```

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return; // if already marked -> do nothing
    setMarkBit(p); // set the mark bit
    for (i=0; i < length(p); i++) // for each word in p's block
        mark(p[i]); // make recursive call
    return;
}</pre>
```

Mark using depth-first traversal of the memory graph

```
ptr mark(ptr p) {
    if (!is_ptr(p)) return; // if not pointer -> do nothing
    if (markBitSet(p)) return; // if already marked -> do nothing
    setMarkBit(p); // set the mark bit
    for (i=0; i < length(p); i++) // for each word in p's block
        mark(p[i]); // make recursive call
    return;
}</pre>
```

Sweep using lengths to find next block

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) {
  while (p < end) { // for entire heap
    if markBitSet(p) // did we reach this block?
        clearMarkBit();
    else if (allocateBitSet(p))
        free(p);
        p += length(p);
}</pre>
```

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

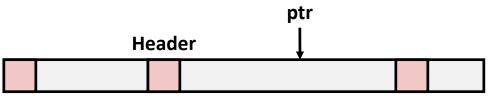
Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

Mark using depth-first traversal of the memory graph

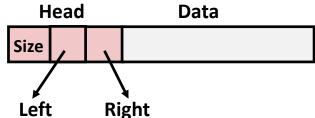
Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) {
  while (p < end) { // for entire heap
    if markBitSet(p) // did we reach this block?
        clearMarkBit(); // yes -> so just clear mark bit
    else if (allocateBitSet(p)) // never reached: is it allocated?
        free(p); // yes -> its garbage, free it
        p += length(p);
}
```


Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) {
  while (p < end) { // for entire heap
    if markBitSet(p) // did we reach this block?
        clearMarkBit(); // yes -> so just clear mark bit
    else if (allocateBitSet(p)) // never reached: is it allocated?
        free(p); // yes -> its garbage, free it
        p += length(p); // goto next block
}
```

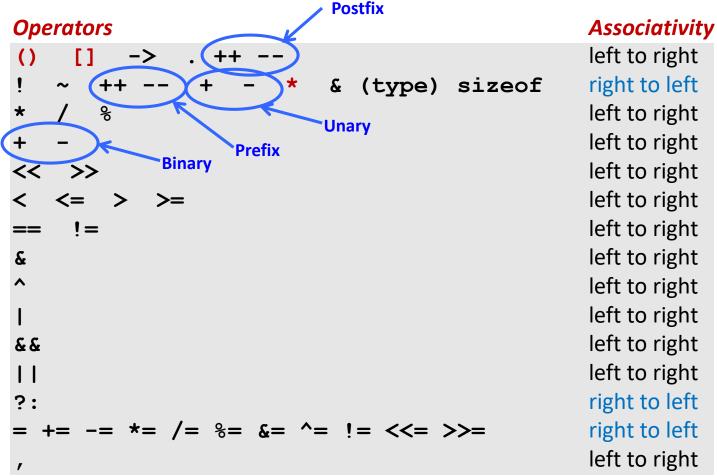

Conservative Mark & Sweep in C

- A "conservative garbage collector" for C programs
 - is_ptr() determines if a word is a pointer by checking if it points to an allocated block of memory
 - But, in C pointers can point to the middle of a block

So how to find the beginning of the block?

- Can use a balanced binary tree to keep track of all allocated blocks (key is start-of-block)
- Balanced-tree pointers can be stored in header (use two additional words)

Left: smaller addresses Right: larger addresses


Today

- **Explicit free lists**
- Segregated free lists
- Garbage collection
- Memory-related perils and pitfalls

Memory-Related Perils and Pitfalls

- Dereferencing bad pointers
- Reading uninitialized memory
- Overwriting memory
- Referencing nonexistent variables
- Freeing blocks multiple times
- Referencing freed blocks
- Failing to free blocks

C operators

->, (), and [] have high precedence, with * and & just below
 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated 45

C Pointer Declarations: Test Yourself!

p is a pointer to int
p is an array[13] of pointer to int
p is an array[13] of pointer to int
p is a pointer to a pointer to an int
p is a pointer to an array[13] of int
f is a function returning a pointer to int
f is a pointer to a function returning int
f is a function returning ptr to an array[13] of pointers to functions returning int
x is an array[3] of pointers to functions returning pointers to array[5] of ints

46

Parsing: int (*(*f())[13])()

f

- int (*(*f())[13])()
- int (*(*<mark>f()</mark>)[13])()

int (*(*f())[13])()

int (*(*f())[13])()

int (*(*f())[13])()

int (*(*f())[13])()

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

f is a function

f is a function that returns a ptr

f is a a function that returns a ptr to an array of 13

f is a ptr to a function that returns a ptr to an array of 13 ptrs

f is a ptr to a function that returns a ptr to an array of 13 ptrs to function returning an int

C Pointer Declarations: Test Yourself!

int	*p	p is a pointer to int
int	*p[13]	p is an array[13] of pointer to int
int	*(p[13])	p is an array[13] of pointer to int
int	**p	p is a pointer to a pointer to an int
int	(*p) [13]	p is a pointer to an array[13] of int
int	*f()	f is a function returning a pointer to int
int	(*f)()	f is a pointer to a function returning int
int	(*(*f())[13])()	f is a function returning ptr to an array[13] of pointers to functions returning int
int	(*(*x[3])())[5]	x is an array[3] of pointers to functions returning pointers to array[5] of ints

48

A better way: int (*(*f())[13])()

// pointer to a function returning an int
typedef int (*pfri)();

// An array of thirteen pfri's
typedef pfri arr13pfri[13];

// pointer to an array of thirteen pfri's
typedef arr13pfri* ptrToArr;

// ptr to function returning a
// ptr to an array of 13 pointer's to functions which return ints
typedef ptrToArr (*pfrArr13fri)();

Dereferencing Bad Pointers

The classic scanf bug

int val; ... scanf("%d", val);

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

```
/* return y = Ax */
int *matvec(int **A, int *x) {
    int *y = malloc(N*sizeof(int));
    int i, j;
    for (i=0; i<N; i++)
        for (j=0; j<N; j++)
            y[i] += A[i][j]*x[j];
    return y;
}</pre>
```

Can avoid by using calloc

Allocating the (possibly) wrong sized object

```
int **p;
p = malloc(N*sizeof(int));
for (i=0; i<N; i++) {
    p[i] = malloc(M*sizeof(int));
}
```

Can you spot the bug?

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Off-by-one errors

```
char **p;
p = malloc(N*sizeof(char *));
for (i=0; i<=N; i++) {
    p[i] = malloc(M*sizeof(char));
}
```

```
char *p;
p = malloc(strlen(s));
strcpy(p,s);
```

Not checking the max string size

```
char s[8];
int i;
gets(s); /* reads "123456789" from stdin */
```

Basis for classic buffer overflow attacks

Misunderstanding pointer arithmetic

```
int *search(int *p, int val) {
  while (p && *p != val)
     p += sizeof(int);
  return p;
}
```

Referencing a pointer instead of the object it points to

```
int *BinheapDelete(int **binheap, int *size) {
   int *packet;
   packet = binheap[0];
   binheap[0] = binheap[*size - 1];
   *size--;
   Heapify(binheap, *size, 0);
   return (packet) ;
                           Operators
}
                             []
                                          (type) sizeof
```

*

+

==

& ^

88 11

?:

<< >>

8

< <= > >= !=

= += -= *= /= %= &= ^= != <<= >>=

Associativity left to right right to left left to right right to left right to left left to right

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function returns

```
int *foo () {
    int val;
    return &val;
}
```

Freeing Blocks Multiple Times

Nasty!

Referencing Freed Blocks

Evil!

Failing to Free Blocks (Memory Leaks)

Slow, long-term killer!

```
foo() {
    int *x = malloc(N*sizeof(int));
    ...
    return;
}
```

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

```
struct list {
   int val;
   struct list *next;
};
foo() {
   struct list *head = malloc(sizeof(struct list));
   head \rightarrow val = 0;
   head->next = NULL;
   <create and manipulate the rest of the list>
    . . .
   free(head);
   return;
}
```

Dealing With Memory Bugs

Debugger: gdb

- Good for finding bad pointer dereferences
- Hard to detect the other memory bugs

Data structure consistency checker

- Runs silently, prints message only on error
- Use as a probe to zero in on error

Binary translator: valgrind

- Powerful debugging and analysis technique
- Rewrites text section of executable object file
- Checks each individual reference at runtime
 - Bad pointers, overwrites, refs outside of allocated block

glibc malloc contains checking code

setenv MALLOC_CHECK_ 3