
15213 Lecture 11: The Memory Hierarchy

Learning Objectives:
• Understand locality of reference and why useful programs tend to exhibit it.
• Be able to distinguish between the two types of locality.
• Given a simple program, be able to estimate its locality and suggest ways to improve it.
• Explain property of cache blocks and their advantage as a unit of cache organization.
• Be able to list the three major types of cache misses.

1 Locality of Reference
The two ends of the memory hierarchy exhibit wildly different performance: their latency
(delay) and throughput (line rate) differ by many orders of magnitude. You might expect
the performance of programs (and, ultimately, a computer system) to match that of the
slowest storage technology it requires; fortunately, this is not the case. In fact, overall
performance is usually closer to that of the fastest technology! Let’s look at why.

1. Consider the following code:

int foo = 0;
...

Do you expect that the program is done accessing foo? Why or why not?

2. Now consider this code:

int foo = 0;
foo = prompt_int("Please enter foo");
...

Do you expect that the program is done accessing foo? Why or why not?

The program property you just observed is known as temporal locality.



3. Consider the following code:

int bar[8];
bar[0] = prompt_int("Enter first score");
...

Which index of bar do you expect the program to access next?

This property is known as spatial locality.

4. Given this code:

int sum = 0;
for(int i = 0; i < n; ++i) sum += a[i];

Indicate the type(s) of locality exhibited by each of the program’s variables.
variable temporal locality? spatial locality? no locality?

a
i
n

sum

2 Improving Locality
Of course, although locality is a common program property, different programs exhibit it
to varying extents. Take the following example:

1 int a[3][4];
2 // (init a)
3 int sum = 0;
4 for(int j = 0; j < 4; ++j)
5 for(int i = 0; i < 3; ++i)
6 sum += a[i][j];

5. Using your knowledge of nested arrays’ memory layout, number the entries of the
following table to indicate the order in which the code accesses a’s memory locations.

a[0][0] a[2][3]

6. What change could you make to the code to improve its spatial locality?

2



3 Caching Main Memory
Locality means that programs tend to access the data at any given level of the memory
hierarchy more often than that at the next level. Over the past several decades, increases
in CPU speeds have greatly outpaced those in memory speeds, leaving a wide gap in the
memory hierarchy. There is now a latency difference of at least two orders of magnitude
between registers and main memory, meaning that the CPU can execute hundreds of
instructions in the time it takes for a single memory access to complete. In order to hide
the latency of main memory, modern memory hierarchies add one or more levels of CPU
cache before it, whose contents the CPU manages automatically. We now examine this
management mechanism.
One fundamental property of a CPU cache is that it splits memory into blocks of

adjacent bytes: Whenever an access cannot be served from cache (a cache miss), the
CPU transfers the entire block surrounding the requested address. While designs using a
block size of a single byte are possible, larger sizes have become much more prevalent.

7. In terms of locality, what is the benefit of having multi-byte blocks?

8. Imagine accessing the fields of the following struct in the order a, b, d, e on a machine.
struct ure {

int a;
int b;
int c;
int d;
int e;
int f;

};

Draw boxes around adjacent variables to construct blocks of two ints that would
minimize the number of cache misses triggered by these accesses:

a b c d e f

9. Is there any combination of boxes (no matter their size) that would avoid the miss
on a?

The cache misses you just observed are known as compulsory misses because they
occur as a result of accessing data for the first time.

3



10. Imagine that the previous sequence of accesses were followed by one to the c member.
With the blocks you drew before, what happens as you draw a box around c?

11. What additional requirement should we impose on blocks to avoid this situation?

4 Reusing Cache Lines
While cached, each block occupies a location known as a cache line. When the cache runs
out of lines, it must free space by evicting an existing block back to memory every time
it needs to cache a new one. Where and how this happens is the subject of a later lecture.

1 int sum = 0, prod = 1;
2 // (init buffer, an array of N ints for some really large N)
3 for(int index = 0; index < N; ++index)
4 sum += buffer[index];
5 for(int index = 0; index < N; ++index)
6 prod *= buffer[index];

12. When running the above code, how many times does the first for loop access buffer?

13. Let’s assume we have a cache with N blocks of 4 ints. How many of those accesses
miss? You can start by accessing buffer[0], then buffer[1], and so on until you
find a pattern.

14. How many buffer accesses and misses are there in the second for loop?

15. If we reduced the number of blocks from N to 1, this would greatly increase the
number of misses in the second for loop. Why?

4



We call this new type of miss a capacity miss because it results from limited cache
capacity. Notice that such misses occur even in programs exhibiting good locality.

16. Look back at the code sample at the beginning of section 2. How many bytes does
the a array occupy?

17. We run that code on a machine with 16-byte blocks. What is the fewest number of
such blocks that a could fit in?

18. For which indices of the array do you expect a cache miss on line 6 of the program?

For performance reasons, many caches further limit which cache line(s) a given block of
memory can map to (i.e. where a given address can be stored in cache). Depending on a
program’s memory access pattern, this can necessitate evictions before the cache is full.

19. Imagine the machine in the previous question mapped all the blocks corresponding
to a to the same cache line. How would this change the pattern of misses?

You just encountered what are known as conflict misses. When talking a program’s cache
behavior, we often combine the the number of capacity and conflict misses.

20. (Advanced) Assume the cache is divided into 256 lines. The machine’s cache line
mapping in the previous question should seem overly naïve: when running this simple
program, it would have wasted 255 of these lines! Using only byte-sized constant(s)
and bitwise operations, propose a datalab-style mapping function from 64-bit memory
address to cache line index. Your scheme should be kinder to the original program,
but must not split blocks between separate cache lines. (Hint: Think about which
bits of the memory address you should use in order to best achieve these goals.)

5


