
15213 Lecture 13: Linking

Learning Objectives
• Be able to name the four principal steps of the C build process.
• Be able to identify which C language elements will produce labels and symbols.
• Recognize the difference between an object file’s symbol table and its relocation table.
• Understand that types are a feature of the C language that disappear upon compilation.
• Be able to recognize when globals clash, even if the compiler and/or linker cannot tell.

Getting Started
To get a copy of today’s activity, log into a shark machine and do the following:

1. $ wget http://www.cs.cmu.edu/~213/activities/lec13
2. $ chmod +x lec13
3. $ ./lec13

Then follow the instructions on your screen, filling in the below discussion questions only as
prompted to do so. As you complete each part of the exercise, you’ll simply reinvoke the lec13
executable repeatedly in the same manner1.

3 Phases of Compilation
1. In the cpp step, where is all the extra code coming from?

2. The gcc -S main.c step produces a file called main.s. What type of file is this? Examining
its contents, you should notice labels corresponding to the global and both functions. Given
only a label’s name, how can you tell its type?

4 The Symbol Table
3. Looking at the addresses in the leftmost column, do you notice anything suspicious about the

locations of global and set_global?

1In case you get lost or want to see a past set of instructions again, you can seek directly to any part of the activity.
Each invocation outputs a “page number” in the upper-right corner; if passed to lec13 as a command-line
argument, this replays that part. You can also provide the section numbers from this sheet.

http://www.cs.cmu.edu/~213/activities/lec13


5 Object File Sections
4. Which section contains set_global? How about global?

5. The output also contains flags describing the properties of each section. Thinking back to
attack lab, describe one limitation that these flags (or the lack thereof) impose on each of the
sections from your previous answer.

6. The sections’ offsets within the object file differ, but what do you notice about their memory
addresses (MA)?

6 Relocations
7. Try disassembling the object file using objdump -d. At what address(es) does the code seem

to expect to find global? How about the printf() function?

8. The object file also includes what’s known as a “relocation table.” Examine this with objdump
-r. What locations does it record (the leftmost column), and do you have a guess as to why
this will be useful?

7 The BSS
9. The global has moved to a different section: which one? Can you guess why the compiler

treats zero-initialized variables specially?

9 Clashing Symbols
10. Take a quick look at both main_zero.c and helper.c. What do you think will happen when

we try to link these modules together?

2



12 (Advanced) Missing Declarations
11. Will building this program (linking against helper.o) work? If so, why? If not, at what step

of the build (preprocessing, compilation, assembly, or linking) will it fail?

14 (Advanced) Mismatched Types
12. What’s wrong with the program now?

13. Will building this program work? If so, why? If not, at what step will it fail?

15 (Advanced) Silent Failure
14. Did the build fail as early as you expected?

17 (Advanced) Mutability
15. What is inconsistent now? How do you expect the program to behave?

3


	Phases of Compilation
	The Symbol Table
	Object File Sections
	Relocations
	The BSS
	Clashing Symbols
	(Advanced) Missing Declarations
	(Advanced) Mismatched Types
	(Advanced) Silent Failure
	(Advanced) Mutability

