
15213 Lecture 9: Advanced aka Security

1 Getting Started
Let’s look back at the example in Lecture 1:

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct_t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

1. Where is the struct allocated in the system?

2. What critical value is pushed onto the stack for every function call?

3. The s.a[i] line is writing to memory. In lecture 1, fun(6) crashed the program.
Why did writing to this location cause the process to crash?

2 Gets
There are many routines in C that take in user input. We will briefly explore one of the
simplest, gets(), and how this routine has security vulnerabilities.

char *gets(char *dest)
{

int c = getchar();
char *p = dest;
// EOF indicates there is no further input.
while (c != EOF && c != ’\n’) {

*p++ = c;
c = getchar();

}
*p = ’\0’;
return dest;

}

1. In C, do we know how much space has been allocated to *dest?

2. Given that getchar() reads one character from stdin, when does gets() stop reading
in input?

3. Do the terminating conditions for gets() have any relation to the input buffer?

4. What is another C routine that accepts buffer(s) and not their size(s)?

3 Overwriting Stack
In the following section, we will be investigating how the following routine, intented for
echoing user input back to the screen using puts to print the string, may exhibit unintended
behavior.

00000000004006cf <echo>:
4006cf: 48 83 ec 18 sub $0x18,%rsp
4006d3: 48 89 e7 mov %rsp,%rdi
4006d6: e8 a5 ff ff ff callq 400680 <gets>
4006db: 48 89 e7 mov %rsp,%rdi
4006de: e8 3d fe ff ff callq 400520 <puts>
4006e3: 48 83 c4 18 add $0x18,%rsp
4006e7: c3 retq

1. Given that echo() allocates a char buffer on the stack, what is the largest that the
buffer may be legitamately sized by the compiler?

2. In the following stack diagram, label the type of each region of memory or leave it
blank if it is unknown. Before the call to gets(), %rsp has the value 0x414140.

+0x00 ← $rsp = 0x414140
+0x08

+0x10

+0x18

+0x20

+0x28

...

3. While the echo() function is running, you type in the following string:
123456781234567812345678@AA\0
Fill in the following stack diagram with the new values.

+0x00 ← $rsp = 0x414140
+0x08

+0x10

+0x18

+0x20

+0x28

...

4 Exploit
Note, while the compiled code must follow the Linux x64 ABI, that is not a requirement of
the system and exploits can ignore these conventions to achieve the desired behavior. We
will see how the simple stack overwrite from the previous section can do more than just
crash the program.

1. Based on the previous stack diagram and input, draw the flow of execution starting
with the return from gets() in echo().
(You can use the ASCII values (1=0x31,@=0x40,A=0x41).)

2. When does this flow differ from the naive execution path?

The exploit string “returned” execution to the stack. Currently, execution would attempt
to use the ASCII string as instructions (the first of which would be xor %esi,(%rdx)).

1. Suppose you wanted to make the 0xdecafbad the return value, write the assembly
to do so.

2. The bytes for that instruction are: 0xb8 0xad 0xfb 0xca 0xde. Where would those
bytes be placed in our input string to execute them?

Processes include a copy of the C standard library. That contains functionality to open a
shell and thereby run arbitrary code. So most exploits are trying to invoke the appropriate
function. In this case, we took the first step in running arbitrary code.

1. (Advanced) We made a simplifying assumption regarding the exploit’s address. What
is it?

5 Defense
System designers have come up with many countermeasures to reduce program vulnerabil-
ities. We will review several of these approaches here.

fgets() has the following type signature; why is it safer than gets()?

char *fgets(char *s, int size, FILE *stream);

1. Previously, the last characters of the exploit string were carefully chosen. What
would happen if the stack were somewhere else in memory?

2. The OS decides where to place the stack in memory. How could we minimize the
CHANCE that the exploit guessed the right address?

So far, the program has trusted that its stack is uncorrupted. The compiler can put
a “canary” value on the stack to trigger if the stack is modified. The following assembly
includes the canary instructions, denoted by *.
The register %fs is special and always holds a pointer.

40072f: sub $0x18,%rsp
* 400733: mov %fs:0x28,%rax
* 40073c: mov %rax,0x8(%rsp)
* 400741: xor %eax,%eax

400743: mov %rsp,%rdi
400746: callq 4006e0 <gets>
40074b: mov %rsp,%rdi
40074e: callq 400570 <puts@plt>

* 400753: mov 0x8(%rsp),%rax
* 400758: xor %fs:0x28,%rax
* 400761: jz 400768 <echo+0x39>
* 400763: callq 400580 <__stack_chk_fail>

400768: add $0x18,%rsp
40076c: retq

1. Write pseudo-code for the canary instructions.

2. What would happen if we used our earlier exploit string with this revised assembly?

3. (Optional) What costs (memory, time, instructions, etc.) are associated with this
revised assembly?

6 ROP
64-bit x86 adds a no-execute bit that is commonly applied to the stack. However, the stack
is still writable by user input and the C standard library must be executable in the process.
The new restrictions have led to increased prevelance of return-oriented programming

(ROP) attacks, in which the attacker searches the executable for preexisting “gadgets”
having parts of the desired assembly sequence.

1. How did we initially transfer control to our code in the exploit before?

2. In the following assembly, the middle section shows the machine code for the corre-
sponding assembly sequence. What byte value corresponds to a return instruction?

3. movq %rax, %rdi is encoded as 48 89 c7. At what address does that byte sequence
exist in the following assembly?

<setval>:
4004d0: c7 07 d4 48 89 c7 movl $0xc78948d4,(%rdi)
4004d6: c3 retq

1. If the value on the top of the stack were the address in the previous question, and a
return instruction executed, describe the steps of the subsequent execution.

2. Why is it important that each gadget ends with a ret instruction?

	Getting Started
	Gets
	Overwriting Stack
	Exploit
	Defense
	ROP

