
15-213 Summer 2018 Lecture 20*: Malloc Lab GDB review

• Login to a shark machine

• wget http://www.cs.cmu.edu/~213/activities/recML.tar

• tar xf recML.tar

• cd recML

• make

1. Activity 1 --- debugging with gdb

$ gdb --args ./mdriver -c traces/syn-mix-short.rep

(gdb) run

(gdb) backtrace

(gdb) list

// to inspect block content

(gdb) x /10gx block

// how do we print out the block content? What do we cast it to?

(gdb) print (block_t)*[address]

// to go up a frame for the inspection of call stack

(gdb) frame 1

2. Activity 2 --- debugging with gdb continued

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep

(gdb) run

//How can we know when this inconsistency first occurred, and therefore figure out why?

(gdb) watch *[header address] // where is header address?

(gdb) watch *[footer address]

Download the (second) handout.

$ wget http://www.cs.cmu.edu/~213/activities/recMLb.tar

$ tar xf recMLb.tar

$ cd recMLb

$ make

3. Run mdriver using GDB.

$ gdb --args ./mdriver -c ./traces/syn-array-short.rep -D

...

(gdb) run

You should see “garbled bytes” errors:

...

Throughput targets: min=6528, max=11750, benchmark=13056

Malloc size 9904 on address 0x800000010.

Malloc size 50084 on address 0x8000026d0.

ERROR [trace ././traces/syn-array-short.rep, line 7]: block 0 has 8

garbled bytes, starting at byte 0

...

Terminated with 14 errors

[Inferior 1 (process 30988) exited normally]

4. Set a watchpoint on the first garbled address.

(gdb) watch *0x800000010

(gdb) run

... a few continues ...

Hardware watchpoint 1: *0x800000010

Old value = -7350814

New value = 9928

mm_malloc (size=50084) at mm.c:276

276 dbg_printf("Malloc size %zd on address %p.\n", size, bp);

(gdb) c

Continuing.

Malloc size 50084 on address 0x8000026d0.

ERROR [trace ././traces/syn-array-short.rep, line 7]: block 0 has 8

garbled bytes, starting at byte 0

5. What happened?

http://www.cs.cmu.edu/~213/activities/recMLb.tar

Run mdriver-2 using GDB.

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep

...

(gdb) run

You should see this error:

Malloc size 9904 on address 0x8000036d0

ERROR [trace ./traces/syn-array-short.rep, line 5]: Payload

(0x8000036d0:0x800005d7f) lies outside heap (0x800000000:0x8000036cf)

2. Set a watchpoint on the header of the payload.

(gdb) watch *0x8000036c8

(gdb) run

...

Hardware watchpoint 1: *0x8000036c8

Old value = 1

New value = 9921

write_header(block=0x8000036c8, size=9920, alloc=true) at mm-2.c:573

3. Backtrace to see what function called write_header.

(gdb) bt

#0 write_header (block=0x8000036c8, size=9920, alloc=true) at mm-

2.c:573

#1 0x0000000000407d93 in place (block=0x8000036c8, asize=9920) at mm-

2.c:458

...

4. The writes occurred in place. Is place implemented incorrectly, or was it given a bad argument?

5. GDB Appendix

• backtrace: Shows the call stack

// “bt” for short

• list: Shows source code

• print <expression>

// “p” for short, you can practically print anything, whatever you can print in your c file

// p[rint] *<name>: print what is pointed to by <name>

// p/x <name>: print value of <name> in hex format

• watch <expression>

// typically an address where a var that we care about is stored

• break <function / line>

// “b” for short

• break <function / line> if <expression>

// only stops execution when the expression evaluates to true
// dis[able] 1: disable breakpoint 1
// en[able] 1: enable breakpoint 1
// d[elete] 1: delete breakpoint 1
// cond 1: make breakpoint 1 unconditional

