Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5% Lecture, May 30, 2018

Instructor:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Intel x86 Processors

s Dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on
= Now 3 volumes, about 5,000 pages of documentation
m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

= Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
» In terms of speed. Less so for low power.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
= First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit Intel processor , referred to as I1A32

= Added “flat addressing”, capable of running Unix
= Pentium 4E 2004 125M 2800-3800

= First 64-bit Intel x86 processor, referred to as x86-64
mCore2 2006 291M 1060-3333

= First multi-core Intel processor

m Corei7 2008 731M 1600-4400

= Four cores (our shark machines)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Intel x86 Processors, cont.

= Machine Evolution _ _ _
=38 1985 0.3M '“tegfa‘eé:MQmOW Controller:~:3:Ch DDR3:
‘ & .

= Pentium 1993 3.1M

= Pentium/MMX 1997 4.5M
" PentiumPro 1995 6.5M

= Pentium Il 1999 8.2M

= Pentium4 2000 42M

= Core2 Duo 2006 291M

= Corei7 2008 731M

Core0 Core 1 Core2 - Core3

Shared L3 Cache

= Added Features
= |[nstructions to support multimedia operations
= |[nstructions to enable more efficient conditional operations
» Transition from 32 bits to 64 bits

Bryant and O'EaIIM9&§p89£y§§ms: A Programmer’s Perspective, Third Edition 5

Intel x86 Processors, cont.

m Past Generations Process technology
= 15 Pentium Pro 1995 600 nm
= 15t Pentium Il 1999 250 nm
= 1* Pentium4 2000 180 nm

= 15t Core 2 Duo 2006 65 Nm Process technology dimension
. = width of narrowest wires
= Recent Generations (10 nm = 100 atoms wide)

1. Nehalem 2008 45 nm
Sandy Bridge 2011 32 nm
lvy Bridge 2012 22 nm
Haswell 2013 22 nm
Broadwell 2014 14 nm
Skylake 2015 14 nm
[. Kaby Lake2016 14 nm

m Upcoming Generations
Bryant and O’Hallarg\,&m&&b@!ﬁ@ A Prongl’ZP@rspectivJ‘QirMon 6

SO S

2017 State of the Art: Skylake

s Mobile Model: Core i7
= 2.6-2.9 GHz
= 45 W

Banuanon

m Desktop Model: Core i7
* Integrated graphics
= 2.8-4.0 GHz
= 35-91 W

Agent
wi
display,
mermory,
& 1/O
controllers

=
=
E
—
—
=

1100

L]
m Server Model: Xeon
Figure 1: Architecture components layout for an Intel® Core™ i7 processor 6700K for desktop systems. This SoC

- I t t d h H contains 4 CPU cores, outlined in blue dashed boxes. Outlined in the red dashed box, is an Intef® HD Graphics 530. It
n eg ra e g ra p ICS is a one-slice instantiation of Intel processor graphics gen9 architecture.

= Multi-socket enabled
= 2-3.7 GHz

= 25-80 W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel

= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

" Built Opteron: tough competitor to Pentium 4

* Developed x86-64, their own extension to 64 bits

m Recent Years

" Intel got its act together
» Leads the world in semiconductor technology
= AMD has fallen behind
= Relies on external semiconductor manufacturer

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Intel’s 64-Bit History
m 2001: Intel Attempts Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy

* Performance disappointing

m 2003: AMD Steps in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on IA64
= Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64

= But, lots of code still runs in 32-bit mode

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Our Coverage

m IA32
= The traditional x86
= For 15/18-213: RIP, Summer 2015

m X86-64
= The standard
= shark> gcc hello.c
" shark> gcc —-m64 hello.c

m Presentation
= Book covers x86-64
= Web aside on IA32

= We will only cover x86-64

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

10

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Levels of Abstraction

C programmer

C code
Nice clean layers,
but beware...
Assembly programmer
s K Addresses femary
egisters > o
PC ; Data . (I:)a(t]a

Condition Instructions Stack

Codes <
Computer Designer A e b Xl 'ﬁﬂ,-,i;,‘(/)

7] 8 % J i

Caches, clock freq, layout,

Of coiirse, you know that: It’s why you are taking this

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Eﬂtﬁn e o

12

Carnegie Mellon

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
for writing assembly/machine code.

= Examples: instruction set specification, registers
m Microarchitecture: Implementation of the architecture
= Examples: cache sizes and core frequency
m Code Forms:
= Machine Code: The byte-level programs that a processor executes
= Assembly Code: A text representation of machine code
m Example ISAs:
= |ntel: x86, 1A32, Itanium, x86-64
= ARM: Used in almost all mobile phones

= RISCV: New open-source ISA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Assembly/Machine Code View

CPU Memory
Addresses
Registers] Code
PC < ikl > Data
Conditio
n Instructions Stack
¢
Caodes

Programmer-Visible State

= PC: Program counter " Memory

= Address of next instruction Byte addressable array

- Called “RIP” (x86-64)
= Register file

» Code and user data
= Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

Bryant ai = Used for conditional branching 14

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values

= Addresses (untyped pointers)
m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

s No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

x86-64 Integer Registers

%rax %eax %r8 %sr8d

%rbx %ebx %r9 %srd

%$rcx %ecx %rl0 %srl0d
$rdx %edx Srll srlld
%$rsi %esi %$rl2 srlad
Srdi sedi %rl3 %srl3d
%rsp %esp %rl4 srldd
%rbp %ebp %rl5 %rl5d

= Can reference low-order 4 bytes (also low-order 1 & 2 bytes)

= Not part of memory (or cache)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Some History: I1A32 Registers Origin

(mostly obsolete)

—
$eax $ax $ah 2al accumulate
o secx ICxX $ch scl counter
g
5 Sedx $dx sdh od1 data
o
(1)
@ sebx $bx sbh sbl base
)
o (o) - Q - source
oesl $s1i e
1 . destination
$Sedi $di e
N
sesp %sSp stack
pointer
base
o b
oebp P pointer
\)

Y
16-bit virtual registers

[backwards compatibility) 17

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edit

Assembly Characteristics: Operations

m Transfer data between memory and register
= Load data from memory into register

= Store register data into memory
m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

= |ndirect branches

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Moving Data yrax
= Moving Data srex
mo ource, Dest $rdx

s Operand Types srbx

®* Immediate: Constant integer data srsi

« Example: $0x400, $-533 Srdi
» Like C constant, but prefixed with ‘$’

srs
» Encoded with 1, 2, or 4 bytes °ISP
: : : srb
® Register: One of 16 integer registers sTOp
« Example: $rax, %rl3
SrN

« But $rsp reserved for special use
«Qthers have special uses for particular instructions

« SimpléSt example: (%$rax)

onsecutive bytes of memory at address given by register

Warning: Intel docs use
mov Dest, Source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

» Various other “addressing modes”

Carnegie Mellon

movq Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movq $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, (%rax) *p = -147;

mo $rax, srd t 2 = t 1;
movq < Reg Reg vq X X emp emp
Mem movg %rax, (%$rdx) *p = temp;

N Mem Reg movq (%rax) , %rdx temp = *p;

Cannot do memory-memory transfer with a single instruction

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region

= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Example of Simple Addressing Modes

void

whatAmI (<type> a, <type> b)

{

arardrs

} whatAmI:
movqg
movq
movqg
movq
ret

] $rsi
$rdi

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

($rdi) , %rax
%$rsi), %rdx
$rdx, (%rdi)
$rax, (%rsi)

Carnegie Mellon

22

Example of Simple Addressing Modes

void swap
(long *xp, long *yp)
{ swap:
long t0 = *xp; movqg (%$rdi) , %rax
long t1 = *yp; movq $rsi), S%Srdx
*xp = tl; movq $rdx, (%rdi)
*yp = tO; movq $rax, (%rsi)
} ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Understanding Swap()

Memory
void swap Registers
(long *xp, long *yp) o7 g ,,,f”)?
{ i il
long t0 = *xp; SIS
long tl1 = *yp; i
*xp = t1; %ra
*yp = t0; -grd
} X
Register Value
srdi Xp
srsi yp swap:
trax t0 movq $rdi), %rax # t0 = *xp
$rdx tl movq $rsi), %rdx # tl1 = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24

Understanding Swap()

] Memory
Registers Address
% 12 0x120
¢ | o0x120 >
z 0x118
°FS [ox100
1 0x110
Fra
| x 0x108
srad
- 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

Understanding Swap()

] Memory
Registers Address
% 12 0x120
“FS | ox120 >
z 0x118
5 1 o0x100
1 0x110
Zra
Ly 123 0x108
srd
- 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Understanding Swap()

] Memory
Registers Address
% 12 0x120
¢ | o0x120 >
z 0x118
°FS [ox100
1 0x110
Fra
- 123 0x108
srad
s
- 456 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %$rdx # tl1 = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

Understanding Swap()

] Memory
Reglsters Address
% 456 | 0x120
¢ | o0x120
z 0x118
°FS [ox100
1 0x110
Fra
- 123 0x108
srad
- 456 456 | 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %$rdx # tl = *yp
movqg $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Understanding Swap()

] Memory
Reglsters Address
= 4 0x120
“FS | ox120 26
z 0x118
5 1 o0x100
1 0x110
Zra
srd
- 456 1231 0x100
swap:
movqg $rdi), %rax # t0 = *xp
movqg $rsi), %$rdx # tl = *yp
movqg $rdx, (%$rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Simple Memory Addressing Modes

= Normal (R) Mem[Reg[R]]
= Register R specifies memory address

= Aha! Pointer dereferencing in C

movqg (%rcx) ,srax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region

= Constant displacement D specifies offset

movqg 8 (%rbp) , $rdx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 16 integer registers
= Ri: Index register: Any, except for $rsp

= S: Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases
(Rb,Ri) Mem[Reg[Rb]+Reg][Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg|[Ri]]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Address Computation Examples

D(Rb,R;i,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
Constant “displacement” 1, 2, or 4 bytes

%rdx [0x£000 .

Rb: Base register: Any of 16 integer registers

Srcx 0x0100

= Ri: Indexregister: Any, except for $rsp
=S Scale: 1, 2, 4, or 8 (why these numbers?)
Expression Address Computation Address

0x8 (%rdx)

%Srdx, Srcx)

%$rdx, $rcx, 4)

0x80 (,%rdx, 2)

32

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Computation Examples

srdx 0x£f000

Srcx 0x0100

Expression Address Computation Address
0x8 (%rdx) Oxf000 + Ox8 0xf008
($rdx, $rcx) 0xf000 + 0x100 0xf100
%$rdx, %$rcx,4) 0x£f000 + 4*0x100 |0x£f400
0x80 (, $rdx, 2) 2*0x£f000 + 0x80 0x1e080

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

34

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Address Computation Instruction

m leaqSrc, Dst
= Srcis address mode expression

= Set Dst to address denoted by expression

m Uses
= Computing addresses without a memory reference
« E.g., translationofp = &x[i];
= Computing arithmetic expressions of the form x + k*y
- k=1,2,4,0r8

m Example
}Ong i (g o) Converted to ASM by

return x*12; COMPIEI a: srdi,2), srax # t = x+2%x
} salqg $2, %rax # return t<<2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Some Arithmetic Operations

m Two Operand Instructions:

Format Computation
addqgSrc,Dest Dest = Dest + Src
subqgsrc,Dest Dest = Dest — Src
imulg Src,Dest Dest = Dest * Src
salqgSrc,Dest Dest = Dest << Src Also called shiq
sarqgSrc,Dest Dest = Dest >>Src Arithmetic
shrqgSrc,Dest Dest = Dest >> Src Logical
xorqgSrc,Dest Dest = Dest » Src
andqgSrc,Dest Dest = Dest & Src
orqg Src,Dest Dest = Dest | Src

m Watch out for argument order! Src,Dest
(Warning: Intel docs use “op Dest,Src”)

m No distinction between signed and unsigned int (why?)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Some Arithmetic Operations

m One Operand Instructions
incgDest Dest = Dest + 1
decqgDest Dest = Dest — 1
negqgDest Dest = — Dest
notqgDest Dest = ~Dest

m See book for more instructions

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Carnegie Mellon

Arithmetic Expression Example

arith:
leaq (%rdi, %$rsi), %Srax
long arith addq Frdx, 3%rax
(long x, long y, long z) leaq %$rsi,%$rsi,2), %rdx
{ salqg $4, %rdx
long tl = x+y; leaq 4 (%$rdi, %rdx), %rcx
long t2 = z+tl; imulq rcx, %srax
long t3 = x+4; ret

long t4 =y * 48; .]
long t5 = t3 + t4; Interesting Instructions

long rval = t2 * t5; = leaq: address computation
return rval;

= salgq:shift

= imulq: multiplication

» But, only used once

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Understanding Arithmetic Expression

Example

arith:
leaq (%$rdi,%rsi), %$rax ¥ tl
long arith addq $rdx, %rax # t2
(long x, long y, long z) leaq (%rsi,%rsi,2), %rdx
{ salqg $4, %rdx # t4
long tl = x+y; leaq 4 (%rdi,%$rdx), %rcx # t5
long t2 = z+tl; imulqg $rcx, %rax # rval
long t3 = x+4; ret

long t4 =y * 48;

long rval = t2 * t5;

return rval; srdi Argument x
} srsi Argument y
Frdx Argument z,
t4
$rax tl, t2, rval

$rcx t5

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Today: Machine Programming |: Basics

m History of Intel processors and architectures
m Assembly Basics: Registers, operands, move
m Arithmetic & logical operations

m C, assembly, machine code

40

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcc -Og pl.c p2.c -0 p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting binary in file p

text C program (pl.c p2.c)

l Compiler (gcc -Og -S)

text Asm program (pl.s p2.s)

l Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

l Linker (gcc or 1d)

binary Executable program (p)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Compiling Into Assembly

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y); sumstore:
pushqg $rbx
void sumstore(long x, long y, movq srdx, 3%rbx
long *dest) call plus
{ movq $rax, (%rbx)
long t = plus(x, y); pPoprqg srbx
*dest = t; ret
}

Obtain (on shark machine) with command
gcc -Og -S sum.c
Produces file sum. s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

What it really looks like

.globl sumstore
.type sumstore, @function
sumstore:
.LFB35:
.cfi startproc
pushg 3%rbx
.cfi def cfa offset 16
.cfi offset 3, -16
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)
popq Srbx
.cfi def cfa offset 8
ret
.cfi_endproc
.LFE35:

.size sumstore, .-sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

What it really looks like

Things that look weird
and are preceded by a ‘.’
sumstore: are generally directives.

pushg 3%rbx

sumstore:
pushqg $rbx
movq $rdx, %rbx movq srdx, 3%rbx
call plus call plus
movq $rax, (%rbx) movq srax, (%rbx)
popq $rbx popq Srbx
ret

ret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, 4, or 8 bytes
= Data values

= Addresses (untyped pointers)
m Floating point data of 4, 8, or 10 bytes
m (SIMD vector data types of 8, 16, 32 or 64 bytes)
m Code: Byte sequences encoding series of instructions

s No aggregate types such as arrays or structures

= Just contiguously allocated bytes in memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Assembly Characteristics: Operations

m Transfer data between memory and register
= Load data from memory into register

= Store register data into memory
m Perform arithmetic function on register or memory data

m Transfer control
= Unconditional jumps to/from procedures
= Conditional branches

= |Indirect branch

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46

Object Code

Code for sumstore
m Assembler

0x0400595: . T Iat int
0x53 ranslates . s into .o
0x48 * Binary encoding of each instruction
gxgg = Nearly-complete image of executable code
X
Oxe8 = Missing linkages between code in different
0xf2 files
Ox£ff s Linker
Oxff
Oxff = Resolves references between files

e Total of 14 bytes

0x48 . : : : 4 : :
0x89 ° Each instruction Combines with static run-time libraries
0x03 1, 3, or 5 bytes « E.g., code formalloc, printf
0x5b © Starts at address = Some libraries are dynamically linked

Oxc3 0x0400595 = Linking occurs when program begins

execution

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

Carnegie Mellon

Machine Instruction Example
m CCode

= Store value t where designated by
dest

m Assembly

*dest = t;

movqg %rax, (%rbx)

= Move 8-byte value to memory

» Quad words in x86-64 parlance
= Operands:

t:Register $rax

dest:Register $rbx

*dest: MemoryM[%$rbx]

m Object Code

= 3-byte instruction
= Stored at address 0x40059e

0x40059%9e: 48 89 03

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48

Disassembling Object Code

Disassembled

0000000000400595 <sumstore>:
400595: 53 push %rbx
400596: 48 89 d3 mov $rdx, $rbx
400599: e8 f2 ff ff ff callg 400590 <plus>
40059%9e: 48 89 03 mov $rax, ($rbx)
4005al: 5b pop $rbx
4005a2: 3 retqg

m Disassembler
objdump -d sum
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
* Produces approximate rendition of assembly code

= Can be run on either a.out (complete executable) or . o file

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 49

Carnegie Mellon

Alternate Disassembly
Disassembled

Dump of assembler code for function sumstore:
0x0000000000400595 <+0>: push $rbx
0x0000000000400596 <+1>: mov $rdx, Srbx
0x0000000000400599 <+4>: callg 0x400590 <plus>
0x000000000040059%e <+9>: mov $rax, (3rbx)
0x00000000004005a1 <+12>:pop $rbx
0x00000000004005a2 <+13>:retq

m Within gdb Debugger

= Disassemble procedure
gdb sum
disassemble sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 50

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
Code
Dump of assembler code for function sumstore:

0x0400595: 0x0000000000400595 <+0>: push %rbx

0x53 0x0000000000400596 <+1>: mov $rdx, $rbx

0x48 0x0000000000400599 <+4>: callg 0x400590 <plus>

0x89 0x000000000040059%e <+9>: mov srax, ($rbx)

0xd3 0x00000000004005al <+12>:pop srbx

Oxe8 0x00000000004005a2 <+13>:retq

Oxf2

Oxff

gzi_: = Within gdb Debugger

0x48 = Disassemble procedure

0x89 gdb sum

0x03 disassemble sumstore

0x5b

0xc3 = Examine the 14 bytes starting at sumstore

x/14xb sumstore

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 51

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD .EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text.:

30001000 <.text>:
30001000:

30001001 : , _ .
30001003 - Reverse engineering forbidden by

30001005: Microsoft End User License Agreement
3000100a:

= Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 52

Carnegie Mellon

Machine Programming I: Summary

m History of Intel processors and architectures

= Evolutionary design leads to many quirks and artifacts

m C, assembly, machine code
= New forms of visible state: program counter, registers, ...

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move
= The x86-64 move instructions cover wide range of data movement
forms
m Arithmetic

= C compiler will figure out different instruction combinations to
carry out computation

53

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

