Carnegie Mellon

Virtual Memory: Concepts

15-213: Introduction to Computer Systems
17t Lecture, July 5, 2018

Instructors:
Brian Railing

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1



Carnegie Mellon

Hmmm, How Does This Work?!

Process 1 Process 2 Process n
O0O0O07FFFFFFFFFFF O00O07FFFFFFFFFFF
Stack Stack Stack
Shared Shared Shared
Libraries Libraries Libraries
% t %
Heap Heap Heap
Data Data Data
Text Text Text
400000 400000
000000 000000

Solution: Virtual Memory (today and next lecture)
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Today

m Address spaces

m VM as a tool for caching

m VM as a tool for memory management
m VM as a tool for memory protection

m Address translation
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A System Using Physical Addressing

Main memory
0:
1:
Physical address 2:
(PA)
4

CPU

3:
> 4.
5:
6:
7:
8:

Data word

m Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

Main memory

0:
CPU Chip ..
Virtual address Physical address 2
(VA) (PA) 3:
CPU >  MMU ; > 4.
4100 ;.
A :
6:
7:
8:
M-1
Data word

m Used in all modern servers, laptops, and smart phones
m One of the great ideas in computer science
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Address Spaces

m Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3 ...}

m Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,...,,N-1}

m Physical address space: Set of M = 2™ physical addresses
{0,1,2,3, ..., M-1}
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Why Virtual Memory (VM)?

m Uses main memory efficiently
= Use DRAM as a cache for parts of a virtual address space

m Simplifies memory management
= Each process gets the same uniform linear address space

m Isolates address spaces

= One process can’t interfere with another’s memory
= User program cannot access privileged kernel information and code
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Today

m Address spaces

m VM as a tool for caching

m VM as a tool for memory management
m VM as a tool for memory protection

m Address translation
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VM as a Tool for Caching

m Conceptually, virtual memory is an array of N contiguous
bytes stored on disk.

m The contents of the array on disk are cached in physical
memory (DRAM cache)

= These cache blocks are called pages (size is P = 2P bytes)

Virtual memory Physical memory

vnaltocate 10
VPO | ,

0
VP 1 | Cached \ Empty PPO
Uncached PP 1
—Unattocate |
g Empty
Cached
Uncached >< Empty
Cached PP 2™MP.1
M-1

VP 2"P.1 | Uncached

N-1

Virtual pages (VPs) Physical pages (PPs)
stored on disk cached in DRAM
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Remember: Set Associative Cache Block

offset
E = 2: Two lines per set
Assume: cache block size 8 bytes Address : ‘_A_\
2 lines per set t bits 0...01 (100
A
' N\
(
Vlltee |PLRPBRBBEBF Vlltee |PLRPBRBBEF
[l1(tag |PERBEREBFP I|IF][taes |PLEBREEF || — Indexto
- - find set
< Vlltee |PLRPBRBBEF Vlltee |PLRPBRBBEF

—
g
J
—
I~
1"
=
T
[®)]
am
—
g
J
ety
o
1~
-
T
[®)]
am

\.

S sets
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DRAM Cache Organization

m DRAM cache organization driven by the enormous miss penalty
= DRAM is about 10x slower than SRAM
= Disk is about 10,000x slower than DRAM

m Consequences
= Large page (block) size: typically 4 KB, sometimes 4 MB
= Fully associative

« Any VP can be placed in any PP

= Requires a “large” mapping function — different from cache memories
= Highly sophisticated, expensive replacement algorithms

» Too complicated and open-ended to be implemented in hardware

= Write-back rather than write-through
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Enabling Data Structure: Page Table

m A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
= Per-process kernel data structure in DRAM
Physical memory

Physical page (DRAM)
number or
VP1 PP O

Valid disk address / 1t

VP 4 PP 3

—— VP 7
0/4

~|o|lo|r|Oo]|r|=

null "> Virtual memory
o« ~ (disk)
~
PTE 7 « -, . VP 1
Memory resident Se ~o VP 2
page table Sso A
(DRAM) . VP 3
NS VP 4
A
VP 6
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition vP7 12
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Page Hit

m Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)
number or VPl
Valid  disk address / v 1 PP O
1 s VP4 PP3
>{ 1 —
0 e
1 < _
0 null Y ¢ Virtual memory
0 Q\/ \\\ (diSk)
PTE7[1 N o VP 1
Memory rets;:dent . \\ VP2
page table S~ A
(DRAM) \\ VP 3
~ o VP 4
A
VP 6
VP 7
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Page Fault
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m Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Virtual address

PTEO

0

Physical memory

Physical page (DRAM)
number or
VP1 PPO
VP 2
VP 7
VP4 PP3

PTE 7

e -
—
e \\ﬁ

R|lo|lo|r|Oo]|r|w

Valid disk address /
null /

null > Virtual memory

o ~ (disk)

Cd — . VP 1

Memory resident . . VP 2
page table Sso A

(DRAM) so VP3

RS VP 4
A

VP 6

VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page

0

= |O|IO|=]|O (=

(DRAM)
number or 51
Valid disk address PPO
nu
—— VP 7
- ) VP4 PP 3
—
.; ‘
null \)«\ Virtual memory
o | - (disk)
o~ i o 1
Memory rets;:dent . \\ VP 2
page table S "
(DRAM) so VP3
NS VP 4
A
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

0

= |O|IO|=]|O (=

Physical page (DRAM)
number or 51
Valid disk address PP O
nu
e VP 7
- ) VP4 PP 3
—
:ké
null \)«\ Virtual memory
o | - (disk)
o ~. H o 1
Memory rets;:dent . \\ VP 2
page table S "
(DRAM) so VP3
S VP4
A
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or ¥
Valid disk address
0 null / VP2
—— VP 7
1 — VP3
1 —
1 —
0 L N
0 null Virtual memory
0 / L (disk)
1 ‘/ o VP 1
Memory rets;:dent el Sa VP2
page table S~ RN
(DRAM) \\ N VP 3
o VP 4
SA
VP 6
VP 7
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Handling Page Fault

m Page miss causes page fault (an exception)

Carnegie Mellon

m Page fault handler selects a victim to be evicted (here VP 4)
m Offending instruction is restarted: page hit!
Physical memory
Physical page (DRAM)
Virtual address number or
Valid disk address / z: ; PPO
e VP 7

1 — VP3 PP 3

1 —

0 =

0 null Virtual memory

0 / L (disk)

PTE7[1 ./ s VP 1
Memory rets;:dent Se S VP 2
page table S~ RN
(DRAM) o VP 3
) e . ® . ) \\ VP 4
Key point: Waiting until the miss to copy the page to A o e
DRAM is known as demand paging
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Allocating Pages
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m Allocating a new page (VP 5) of virtual memory.

Physical memory

Physical page (DRAM)
number or B
Valid disk address / v 1 PPO
- s VP 3 PP3
1 —
1 — |
0 .
0 & "~ Virtual memory
0 *‘ N S S N\ (diSk)
PTE7| 2 o S SO VP 1
Memory rets;:dent NS S~ s VP2
page table ool O
(DRAM) NN e
RV VP 4
S A
~. VP 5
VP 6
VP 7
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Locality to the Rescue Again!

m Virtual memory seems terribly inefficient, but it works
because of locality.

m At any point in time, programs tend to access a set of active
virtual pages called the working set

*= Programs with better temporal locality will have smaller working sets

m If (working set size < main memory size)
= Good performance for one process after compulsory misses

m If (SUM(working set sizes) > main memory size )

= Thrashing: Performance meltdown where pages are swapped (copied)
in and out continuously
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Today

m Address spaces

m VM as a tool for caching

= VM as a tool for memory management
m VM as a tool for memory protection

m Address translation
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VM as a Tool for Memory Management

m Key idea: each process has its own virtual address space
= |t can view memory as a simple linear array

= Mapping function scatters addresses through physical memory
« Well-chosen mappings can improve locality

Address )
Virtual 0 ¢ lati 0 Physical
Address VP 1 w) Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
PP6 library code)
. 0
Virtual > pp8
Address VP 1
Space for VP 2
Process 2:

N-1 M-1
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VM as a Tool for Memory Management

m Simplifying memory allocation
= Each virtual page can be mapped to any physical page
= A virtual page can be stored in different physical pages at different times

m Sharing code and data among processes
= Map virtual pages to the same physical page (here: PP 6)

Address )
Virtual 0 ¢ lati 0 Physical
Address VP 1 w) Address
Space for VP 2 PP 2 Space
Process 1: (DRAM)
N-1
(e.g., read-only
Rl library code)
. 0
Virtual > pp8
Address VP 1
Space for VP 2
Process 2:
N-1 M-1
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Simplifying Linking and Loading

Memory
Kernel virtual memory invisible to
Lo user code
u Llnklng User stack
= Each program has similar virtual (e alt T, ~——S%rsp
address space (stack
ointer
= Code, data, and heap always start I P )
at the same addresses. Memory-mapped region for
shared libraries
m Loading
= execve allocates virtual pages ) — brk
for .text and .data sections & R‘:“::“e helalp
creates PTEs marked as invalid e \
= The .text and .data sections Read/write segment Loaded
: (.data, .bss) from
are copied, page by page, on : e , the
demand by the virtual memory Read-only segment executable
system (.init, .text, .rodata) file
0x400000 ’
Unused

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0 24
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Today

m Address spaces

m VM as a tool for caching

m VM as a tool for memory management
m VM as a tool for memory protection

m Address translation
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VM as a Tool for Memory Protection

m Extend PTEs with permission bits
m MMU checks these bits on each access

Process i:
VP 0O:

VP 1:
VP 2:

Process j:
VP 0:

VP 1:
VP 2:

Physical

Carnegie Mellon

Address Space

PP 2

PP 4

PP 6

PP 8

\

SUP READ WRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP 4
Yes Yes Yes No PP 2
o
.
SUP READ WARITE EXEC Address
No Yes No Yes PP9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

PP 9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Today

m Address spaces

m VM as a tool for caching

m VM as a tool for memory management
m VM as a tool for memory protection

m Address translation
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VM Address Translation

m Virtual Address Space
= V={0,1, .., N-1}
m Physical Address Space
= P={01, .., M-1}
m Address Translation
= MAP: V— P U {2}
= For virtual address a:
» MAP(a) = a’ if data at virtual address a is at physical address a’in P

» MAP(a) = 2if data at virtual address a is not in physical memory
— Either invalid or stored on disk

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
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Summary of Address Translation Symbols

m Basic Parameters
= N=2": Number of addresses in virtual address space
= M =2": Number of addresses in physical address space
= P =2P :Pagesize (bytes)
m Components of the virtual address (VA)
= TLBI: TLB index
= TLBT: TLB tag
= VPO: Virtual page offset
= VPN: Virtual page number

s Components of the physical address (PA)
= PPO: Physical page offset (same as VPO)
= PPN: Physical page number

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29



Address Translation With a Page Table

Virtual address
n-1 p p-1 0

Page table
base register (PTBR) Virtual page number (VPN) Virtual page offset (VPO)

(CR3 in x86)

Page table
)Valid Physical page number (PPN)

Physical page table
address for the current
process

Valid bit = 0:
Page not in memoryv Valid bit = 1
(page fault) N

m-1 Y p p-1 v ()
Physical page number (PPN) Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30



Address Translation: Page Hit
@

CPU Chip PTEA
® >
PTE
VA <
>
CPU MMU 9 Cache/
PA > Memory

Data

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Address Translation: Page Fault

Exception

=== > Page fault handler
| 4
|
|
| < J\/L

CPU Chip o I oTen R Victigage

CPU Ve > MMU |« PTE Cache/ Disk
0 e Memory
< New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

Bryant and g’HaIIaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Integrating VM and Cache

PTE
CPU Chip Y po— PTE
hit )
PTEA prea|  PTEA
> miss
CPU VA | MMU Memory
} PA PA PA
miss
PA . Data
hit
L1
Data cache

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address
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Speeding up Translation with a TLB

m Page table entries (PTEs) are cached in L1 like any other
memory word

= PTEs may be evicted by other data references

= PTE hit still requires a small L1 delay

m Solution: Translation Lookaside Buffer (TLB)
= Small set-associative hardware cache in MMU
= Maps virtual page numbers to physical page numbers

= Contains complete page table entries for small number of pages
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Accessing the TLB

m  MMU uses the VPN portion of the virtual address to

access the TLB: I
VPN
TLBT matchestag . — A .
of line withinset ™! p+t p+t-1 p p-1 0

TLB tag (TLBT) | TLB index (TLBI) | VPO

Set0 || | [ta PTE V| |tag PTE
TLBI selects the set
¥
Setl || | [teg PTE b | |tag PTE <
.
|
SetT-1 || | [teg PTE V| |tag PTE

35
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TLB Hit

CPU Chip
TLB
Q PTE
VPN e
VA PA
> >
CPU MMU @ Cache/
Memory
Data

A TLB hit eliminates a memory access
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TLB Miss

CPU Chip

TLB a

a PTE

VPN

VA PTEA
> >
CPU MMU Cache/
3 >| Memory
Data

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?
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Multi-Level Page Tables

m Suppose:
= 4KB (2'?) page size, 48-bit address space, 8-byte PTE

m Problem:

Level 1
= Would need a 512 GB page table! Table
. 288 % 712 % 93 = 239 hytag 1]

m Common solution: Multi-level page table

m Example: 2-level page table

= Level 1 table: each PTE points to a page table (always
memory resident)

= Level 2 table: each PTE points to a page
(paged in and out like any other data)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Level 2
Tables
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We have a

Virtual

memory

VPO

220 Entries of

VP 1023 > 2K allocated VM pages

4 bytes ed Ch VP 1024 for code and data
vP2047 |
\
(null)
Gap > 6K unallocated VM pages

(rnull)

L Walala] /
unall::cate 1023 unallocated pages
Fves3is " VP $215 1 allocated VM page
. for the stack
32 bit addresses, 4KB pages, 4-byte PTEs .« .

[ ]
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A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
0
VPO h
PTEO — [ ereo
VP 1023 > 2K allocated VM pages
PTE1 VP 1024 for code and data
PTE 2 (null) PTE 1023
PTE 3 (null)
vp2047 |
PTE 5 (null)
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8 >
1023 null
(1K _ 9) PTEs I J
null PTEs =ues
PTE 1023
\ unallcc|>cate 1023 unallocated pages
VP $215 1 allocated VM page
. for the stack
32 bit addresses, 4KB pages, 4-byte PTEs .« .

[ ]
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Translating with a k-level Page Table

Page table
base register
(PTBR)
n-1 VIRTUAL ADDRESS o 0
e VPN1 ¢ VPN2 ¢ VPNK VPO
the Level 1 alevel 2 aLevel k
page table page table page table
> > P rir
— @
R _» PPN} —
m-1 \ p1y 0
PPN PPO
PHYSICAL ADDRESS
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Summary

m Programmer’s view of virtual memory
= Each process has its own private linear address space

= Cannot be corrupted by other processes

m System view of virtual memory
= Uses memory efficiently by caching virtual memory pages
» Efficient only because of locality
= Simplifies memory management and programming

= Simplifies protection by providing a convenient interpositioning point
to check permissions
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Academic Integrity “Refresher”

m Harry is having trouble with getopt on cachelab
and googles for getopt to see how to use it.

m Jane is having trouble with fscanf on cachelab
and talks to a friend about how to use it. Her
friend shows her an example for reading two O
integers from a file.

m Sam is confused about how a cache works and
goes to wikipedia to learn about caches. The he
googles for “cache.” He reads several web pages ®
and then starts to write his code.
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Academic Integrity “Refresher”

m Joe has spent several hours staring at a blank
sheet of paper and doesn’t know how to get
started. He googles for “cachelab” and finds a
blog online which talks about how caches work.
He reads it and then implements the code on his
own.

=

m Mary, after several frustrating days, googles for
caches and comes across a github page with the
code for cachelab. She looks at the code. Then
she closes her browser and implements the code
on her own.

=
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Academic Integrity “Refresher”

m Frank is stuck and talks to his friend about
whether he should use multiple arrays or an array @
of structures. They don’t look at code together.

m Andre is stuck and talks to a TA about that fields
he should use to represent a cacheline. They are
working together and writing things down on a O
piece of paper.

m Laura is stuck and talks to a friend about that
fields she should use to represent a cacheline.
They don’t write anything down.

45
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