
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation:
Advanced Concepts

15-213: Introduction to Computer Systems
20th Lecture, July 11, 2018

Instructor:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

⬛ Programmers use
dynamic memory
allocators (such as
malloc) to acquire VM
at run time.
▪ For data structures whose

size is only known at
runtime.

⬛ Dynamic memory
allocators manage an
area of process virtual
memory known as the
heap.

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator

Heap

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Last Lecture: Keeping Track of Free Blocks

⬛ Method 1: Implicit list using length—links all blocks

⬛ Method 2: Explicit list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary: Implicit Lists
⬛ Implementation: very simple

⬛ Allocate cost:
▪ linear time worst case

⬛ Free cost:
▪ constant time worst case
▪ even with coalescing

⬛ Memory usage:
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

⬛ Not used in practice for malloc/free because of
linear-time allocation
▪ used in many special purpose applications

⬛ However, the concepts of splitting and boundary tag
coalescing are general to all allocators

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Keeping Track of Free Blocks

⬛ Method 1: Implicit free list using length—links all blocks

⬛ Method 2: Explicit free list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

⬛ Maintain list(s) of free blocks, not all blocks
▪ The “next” free block could be anywhere

▪ So we need to store forward/back pointers, not just sizes

▪ Still need boundary tags for coalescing

▪ Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

⬛ Logically:

⬛ Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
⬛ Insertion policy: Where in the free list do you put a newly

freed block?

⬛ Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

⬛ Address-ordered policy
▪ Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)

▪ Con: requires search

▪ Pro: studies suggest fragmentation is lower than LIFO/FIFO

Aside: Premature Optimization

Don’t!

Aside: Premature Optimization

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With Explicit Free Lists
⬛ Insertion policy: Where in the free list do you put a newly

freed block?

⬛ Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

⬛ Address-ordered policy
▪ Insert freed blocks so that free list blocks are always in address order:

 addr(prev) < addr(curr) < addr(next)

▪ Con: requires search

▪ Pro: studies suggest fragmentation is lower than LIFO/FIFO

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

⬛ Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 2)

⬛ Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 3)

⬛ Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 4)

⬛ Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some Advice: An Implementation Trick

⬛ Use circular, doubly-linked list

⬛ Support multiple approaches with single data structure

⬛ First-fit vs. next-fit
▪ Either keep free pointer fixed or move as search list

⬛ LIFO vs. FIFO
▪ Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit List Summary
⬛ Comparison to implicit list:

▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full

▪ Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

▪ Some extra space for the links (2 extra words needed for each block)

▪ Does this increase internal fragmentation?

⬛ Most common use of linked lists is in conjunction with
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for

different types of objects

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Segregated List (Seglist) Allocators
⬛ Each size class of blocks has its own free list

⬛ Often have separate classes for each small size

⬛ For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator
⬛ Given an array of free lists, each one for some size class

⬛ To allocate a block of size n:
▪ Search appropriate free list for block of size m > n

▪ If an appropriate block is found:
▪ Split block and place fragment on appropriate list (optional)

▪ If no block is found, try next larger class

▪ Repeat until block is found

⬛ If no block is found:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Place remainder as a single free block in largest size class.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Seglist Allocator (cont.)
⬛ To free a block:

▪ Coalesce and place on appropriate list

⬛ Advantages of seglist allocators
▪ Higher throughput

▪ log time for power-of-two size classes

▪ Better memory utilization

▪ First-fit search of segregated free list approximates a best-fit search

of entire heap.

▪ Extreme case: Giving each block its own size class is equivalent to

best-fit.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Info on Allocators

⬛ D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
▪ The classic reference on dynamic storage allocation

⬛ Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Implicit Memory Management:
Garbage Collection
⬛ Garbage collection: automatic reclamation of heap-allocated

storage—application never has to free

⬛ Common in many dynamic languages:
▪ Python, Ruby, Java, Perl, ML, Lisp, Mathematica

⬛ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage

void foo() {
 int *p = malloc(128);
 return; /* p block is now garbage */
}

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbage Collection

⬛ How does the memory manager know when memory can be
freed?
▪ In general we cannot know what is going to be used in the future since it

depends on conditionals

▪ But we can tell that certain blocks cannot be used if there are no
pointers to them

⬛ Must make certain assumptions about pointers
▪ Memory manager can distinguish pointers from non-pointers
▪ All pointers point to the start of a block
▪ Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Classical GC Algorithms
⬛ Mark-and-sweep collection (McCarthy, 1960)

▪ Does not move blocks (unless you also “compact”)

⬛ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

⬛ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

⬛ Generational Collectors (Lieberman and Hewitt, 1983)
▪ Collection based on lifetimes

▪ Most allocations become garbage very soon

▪ So focus reclamation work on zones of memory recently allocated

⬛ For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory as a Graph
⬛ We view memory as a directed graph

▪ Each block is a node in the graph

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep Collecting
⬛ Can build on top of malloc/free package

▪ Allocate using malloc until you “run out of space”

⬛ When out of space:
▪ Use extra mark bit in the head of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assumptions For a Simple Implementation
⬛ Application
▪ new(n): returns pointer to new block with all locations cleared

▪ read(b,i): read location i of block b into register

▪ write(b,i,v): write v into location i of block b

⬛ Each block will have a header word
▪ addressed as b[-1], for a block b

▪ Used for different purposes in different collectors

⬛ Instructions used by the Garbage Collector
▪ is_ptr(p): determines whether p is a pointer

▪ length(b): returns the length of block b, not including the header

▪ get_roots(): returns all the roots

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // recursively call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // recursively call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // recursively call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // recursively call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]);
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p)
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p) // did we reach this block?
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p) // did we reach this block?
 clearMarkBit(); // yes -> so just clear mark bit
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p) // did we reach this block?
 clearMarkBit(); // yes -> so just clear mark bit
 else if (allocateBitSet(p)) // never reached: is it allocated?
 free(p);
 p += length(p);
}

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p) // did we reach this block?
 clearMarkBit(); // yes -> so just clear mark bit
 else if (allocateBitSet(p)) // never reached: is it allocated?
 free(p); // yes -> its garbage, free it
 p += length(p);
}

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mark and Sweep (cont.)

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // if not pointer -> do nothing
 if (markBitSet(p)) return; // if already marked -> do nothing
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // for each word in p’s block
 mark(p[i]); // make recursive call
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
 while (p < end) { // for entire heap
 if markBitSet(p) // did we reach this block?
 clearMarkBit(); // yes -> so just clear mark bit
 else if (allocateBitSet(p)) // never reached: is it allocated?
 free(p); // yes -> its garbage, free it
 p += length(p); // goto next block
}

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Conservative Mark & Sweep in C
⬛ A “conservative garbage collector” for C programs

▪ is_ptr() determines if a word is a pointer by checking if it points to
an allocated block of memory

▪ But, in C pointers can point to the middle of a block

⬛ So how to find the beginning of the block?
▪ Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

▪ Balanced-tree pointers can be stored in header (use two additional
words)

Header

ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory-Related Perils and Pitfalls

⬛ Dereferencing bad pointers

⬛ Reading uninitialized memory

⬛ Overwriting memory

⬛ Referencing nonexistent variables

⬛ Freeing blocks multiple times

⬛ Referencing freed blocks

⬛ Failing to free blocks

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C operators
Operators Associativity
() [] -> . ++ -- left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

⬛ ->, (), and [] have high precedence, with * and & just below

⬛Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Parsing: int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function
that returns a ptr

int (*(*f())[13])() f is a ptr to a function
that returns a ptr to an
array of 13 ptrs

int (*(*f())[13])() f is a a function
that returns a ptr to an
array of 13

int (*(*f())[13])() f is a ptr to a function
that returns a ptr to an
array of 13 ptrs to functions
returning an int

int (*(*f())[13])() f is a function

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A better way: int (*(*f())[13])()
// pointer to a function returning an int

typedef int (*pfri)();

// An array of thirteen pfri’s

typedef pfri arr13pfri[13];

// pointer to an array of thirteen pfri’s

typedef arr13pfri* ptrToArr;

// ptr to function returning a

// ptr to an array of 13 pointer’s to functions which return ints

typedef ptrToArr (*pfrArr13fri)();

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dereferencing Bad Pointers
⬛ The classic scanf bug

int val;

...

scanf("%d", val);

Carnegie Mellon

51Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reading Uninitialized Memory
⬛ Assuming that heap data is initialized to zero

⬛ Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 y[i] += A[i][j]*x[j];
 return y;
}

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
⬛ Allocating the (possibly) wrong sized object

⬛ Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

Carnegie Mellon

53Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
⬛ Off-by-one errors

char **p;

p = malloc(N*sizeof(char *));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(char));
}

char *p;

p = malloc(strlen(s));
strcpy(p,s);

Carnegie Mellon

54Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
⬛ Not checking the max string size

⬛ Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

55Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
⬛ Misunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (p && *p != val)
 p += sizeof(int);

 return p;
}

Carnegie Mellon

56Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Overwriting Memory
⬛ Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
 int *packet;
 packet = binheap[0];
 binheap[0] = binheap[*size - 1];
 *size--;
 Heapify(binheap, *size, 0);
 return(packet);
}

Carnegie Mellon

57Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Nonexistent Variables
⬛ Forgetting that local variables disappear when a function

returns

int *foo () {
 int val;

 return &val;
}

Carnegie Mellon

58Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing Blocks Multiple Times
⬛ Nasty!

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);

y = malloc(M*sizeof(int));
 <manipulate y>
free(x);

Carnegie Mellon

59Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Referencing Freed Blocks
⬛ Evil!

x = malloc(N*sizeof(int));
 <manipulate x>
free(x);
 ...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
 y[i] = x[i]++;

Carnegie Mellon

60Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
⬛ Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

Carnegie Mellon

61Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Failing to Free Blocks (Memory Leaks)
⬛ Freeing only part of a data structure

struct list {
 int val;
 struct list *next;
};

foo() {
 struct list *head = malloc(sizeof(struct list));
 head->val = 0;
 head->next = NULL;
 <create and manipulate the rest of the list>
 ...
 free(head);
 return;
}

Carnegie Mellon

62Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dealing With Memory Bugs
⬛ Debugger: gdb

▪ Good for finding bad pointer dereferences

▪ Hard to detect the other memory bugs

⬛ Data structure consistency checker
▪ Runs silently, prints message only on error

▪ Use as a probe to zero in on error

⬛ Binary translator: valgrind
▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Checks each individual reference at runtime

▪ Bad pointers, overwrites, refs outside of allocated block

⬛ glibc malloc contains checking code
▪ setenv MALLOC_CHECK_ 3

