
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation: 
Advanced Concepts

15-213: Introduction to Computer Systems
20th Lecture, July 11, 2018

Instructor: 

Brian Railing



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Dynamic Memory Allocation

⬛ Programmers use 
dynamic memory 
allocators (such as 
malloc) to acquire VM 
at run time. 
▪ For data structures whose 

size is only known at 
runtime.

⬛ Dynamic memory 
allocators manage an 
area of process virtual 
memory known as the 
heap. 

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

Top of heap
 (brk ptr)

Application

Dynamic Memory Allocator
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Last Lecture: Keeping Track of Free Blocks

⬛ Method 1: Implicit list using length—links all blocks

⬛ Method 2: Explicit list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Summary: Implicit Lists
⬛ Implementation: very simple

⬛ Allocate cost: 
▪ linear time worst case

⬛ Free cost: 
▪ constant time worst case
▪ even with coalescing

⬛ Memory usage: 
▪ will depend on placement policy

▪ First-fit, next-fit or best-fit

⬛ Not used in practice for malloc/free because of 
linear-time allocation
▪ used in many special purpose applications

⬛ However, the concepts of splitting and boundary tag 
coalescing are general to all allocators
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Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls
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Keeping Track of Free Blocks

⬛ Method 1: Implicit free list using length—links all blocks

⬛ Method 2: Explicit free list among the free blocks using pointers

⬛ Method 3: Segregated free list
▪ Different free lists for different size classes

⬛ Method 4: Blocks sorted by size
▪ Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Explicit Free Lists

⬛ Maintain list(s) of free blocks, not all blocks
▪ The “next” free block could be anywhere

▪ So we need to store forward/back pointers, not just sizes

▪ Still need boundary tags for coalescing

▪ Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free
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Explicit Free Lists

⬛ Logically:

⬛ Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
⬛ Insertion policy: Where in the free list do you put a newly 

freed block?

⬛ Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

⬛ Address-ordered policy
▪ Insert freed blocks so that free list blocks are always in address order: 

         addr(prev) < addr(curr) < addr(next)

▪  Con: requires search

▪  Pro: studies suggest fragmentation is lower than LIFO/FIFO

Aside: Premature Optimization

Don’t!

Aside: Premature Optimization
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Freeing With Explicit Free Lists
⬛ Insertion policy: Where in the free list do you put a newly 

freed block?

⬛ Unordered
▪ LIFO (last-in-first-out) policy

▪ Insert freed block at the beginning of the free list

▪ FIFO (first-in-first-out) policy

▪ Insert freed block at the end of the free list

▪ Pro: simple and constant time

▪ Con: studies suggest fragmentation is worse than address ordered

⬛ Address-ordered policy
▪ Insert freed blocks so that free list blocks are always in address order: 

         addr(prev) < addr(curr) < addr(next)

▪  Con: requires search

▪  Pro: studies suggest fragmentation is lower than LIFO/FIFO



Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Freeing With a LIFO Policy (Case 1)

⬛ Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 2)

⬛ Splice out successor block, coalesce both memory blocks and 
insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

⬛ Splice out predecessor block, coalesce both memory blocks, 
and insert the new block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 4)

⬛ Splice out predecessor and successor blocks, coalesce all 3 
memory blocks and insert the new block at the root of the list

free( )

Root

Before

Root

After

conceptual graphic
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Some Advice: An Implementation Trick

⬛ Use circular, doubly-linked list

⬛ Support multiple approaches with single data structure

⬛ First-fit vs. next-fit
▪ Either keep free pointer fixed or move as search list

⬛ LIFO vs. FIFO
▪ Insert as next block (LIFO), or previous block (FIFO)

A B C D

Free
Pointer

FIFO Insertion
Point

LIFO Insertion
Point

Next fit
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Explicit List Summary
⬛ Comparison to implicit list:

▪ Allocate is linear time in number of free blocks instead of all blocks

▪ Much faster when most of the memory is full 

▪ Slightly more complicated allocate and free since needs to splice blocks 
in and out of the list

▪ Some extra space for the links (2 extra  words needed for each block)

▪ Does this increase internal fragmentation?

⬛ Most common use of linked lists is in conjunction with 
segregated free lists
▪ Keep multiple linked lists of different size classes, or possibly for 

different types of objects
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Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls
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Segregated List (Seglist) Allocators
⬛ Each size class of blocks has its own free list

⬛ Often have separate classes for each small size

⬛ For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf
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Seglist Allocator
⬛ Given an array of free lists, each one for some size class

⬛ To allocate a block of size n:
▪ Search appropriate free list for block of size m > n

▪ If an appropriate block is found:
▪ Split block and place fragment on appropriate list (optional)

▪ If no block is found, try next larger class

▪ Repeat until block is found

⬛ If no block is found:
▪ Request additional heap memory from OS (using sbrk())

▪ Allocate block of n bytes from this new memory

▪ Place remainder as a single free block in largest size class.
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Seglist Allocator (cont.)
⬛ To free a block:

▪ Coalesce and place on appropriate list 

⬛ Advantages of seglist allocators
▪ Higher throughput

▪  log time for power-of-two size classes

▪ Better memory utilization

▪ First-fit search of segregated free list approximates a best-fit search 

of entire heap.

▪ Extreme case: Giving each block its own size class is equivalent to 

best-fit.
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More Info on Allocators

⬛ D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973
▪ The classic reference on dynamic storage allocation

⬛ Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995.
▪ Comprehensive survey

▪ Available from CS:APP student site (csapp.cs.cmu.edu)
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Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls
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Implicit Memory Management:
Garbage Collection
⬛ Garbage collection: automatic reclamation of heap-allocated 

storage—application never has to free

⬛ Common in many dynamic languages:
▪ Python, Ruby, Java, Perl, ML, Lisp, Mathematica

⬛ Variants (“conservative” garbage collectors) exist for C and C++
▪ However, cannot necessarily collect all garbage

void foo() {
   int *p = malloc(128);
   return; /* p block is now garbage */
}
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Garbage Collection

⬛ How does the memory manager know when memory can be 
freed?
▪ In general we cannot know what is going to be used in the future since it 

depends on conditionals

▪ But we can tell that certain blocks cannot be used if there are no 
pointers to them

⬛ Must make certain assumptions about pointers
▪ Memory manager can distinguish pointers from non-pointers
▪ All pointers point to the start of a block 
▪ Cannot hide pointers 

(e.g., by coercing them to an int, and then back again)
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Classical GC Algorithms
⬛ Mark-and-sweep collection (McCarthy, 1960)

▪ Does not move blocks (unless you also “compact”)

⬛ Reference counting (Collins, 1960)
▪ Does not move blocks (not discussed)

⬛ Copying collection (Minsky, 1963)
▪ Moves blocks (not discussed)

⬛ Generational Collectors (Lieberman and Hewitt, 1983)
▪ Collection based on lifetimes

▪ Most allocations become garbage very soon

▪ So focus reclamation work on zones of memory recently allocated

⬛ For more information: 
Jones and Lin, “Garbage Collection: Algorithms for Automatic 
Dynamic Memory”, John Wiley & Sons, 1996.
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Memory as a Graph
⬛ We view memory as a directed graph

▪ Each block is a node in the graph 

▪ Each pointer is an edge in the graph

▪ Locations not in the heap that contain pointers into the heap are called 
root  nodes  (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable  if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
⬛ Can build on top of malloc/free package

▪ Allocate using malloc until you “run out of space”

⬛ When out of space:
▪ Use extra mark bit in the head of each block

▪ Mark: Start at roots and set mark bit on each reachable block

▪ Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows 
here denote 

memory refs, not 
free list ptrs. 
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Assumptions For a Simple Implementation
⬛ Application
▪ new(n):  returns pointer to new block with all locations cleared

▪ read(b,i): read location i of block b into register

▪ write(b,i,v): write v into location i of block b

⬛ Each block will have a header word
▪ addressed as b[-1], for a block b

▪ Used for different purposes in different collectors

⬛ Instructions used by the Garbage Collector
▪ is_ptr(p): determines whether p is a pointer

▪ length(b):  returns the length of block b, not including the header

▪ get_roots():  returns all the roots
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // recursively call mark on all words
     mark(p[i]);     //   in the block
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // recursively call mark on all words
     mark(p[i]);     //   in the block
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // recursively call mark on all words
     mark(p[i]);     //   in the block
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // recursively call mark on all words
     mark(p[i]);     //   in the block
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]); 
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)
         clearMarkBit();
      else if (allocateBitSet(p)) 
         free(p);
      p += length(p);
}     
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)     // did we reach this block?
         clearMarkBit();
      else if (allocateBitSet(p)) 
         free(p);
      p += length(p);
}     
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)     // did we reach this block?
         clearMarkBit();     //  yes -> so just clear mark bit 
      else if (allocateBitSet(p)) 
         free(p);
      p += length(p);
}     
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)     // did we reach this block?
         clearMarkBit();     //  yes -> so just clear mark bit 
      else if (allocateBitSet(p)) // never reached: is it allocated?
         free(p);
      p += length(p);
}     
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)     // did we reach this block?
         clearMarkBit();     //  yes -> so just clear mark bit 
      else if (allocateBitSet(p)) // never reached: is it allocated?
         free(p);     //  yes -> its garbage, free it
      p += length(p);
}     
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Mark and Sweep (cont.)

ptr mark(ptr p) {
   if (!is_ptr(p)) return;        // if not pointer -> do nothing
   if (markBitSet(p)) return;     // if already marked -> do nothing
   setMarkBit(p);                 // set the mark bit
   for (i=0; i < length(p); i++)  // for each word in p’s block
     mark(p[i]);                  //  make recursive call 
   return;
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
   while (p < end) {     // for entire heap
      if markBitSet(p)     // did we reach this block?
         clearMarkBit();     //  yes -> so just clear mark bit 
      else if (allocateBitSet(p)) // never reached: is it allocated?
         free(p);     //  yes -> its garbage, free it
      p += length(p);             // goto next block
}     
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Conservative Mark & Sweep in C
⬛ A “conservative garbage collector” for C programs

▪ is_ptr() determines if a word is a pointer by checking if it points to 
an allocated block of memory

▪ But, in C pointers can point to the middle of a block

⬛ So how to find the beginning of the block?
▪ Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)

▪ Balanced-tree pointers can be stored in header (use two additional 
words)

Header

ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses
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Today

⬛ Explicit free lists

⬛ Segregated free lists

⬛ Garbage collection

⬛ Memory-related perils and pitfalls
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Memory-Related Perils and Pitfalls

⬛ Dereferencing bad pointers

⬛ Reading uninitialized memory

⬛ Overwriting memory

⬛ Referencing nonexistent variables

⬛ Freeing blocks multiple times

⬛ Referencing freed blocks

⬛ Failing to free blocks
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C operators
Operators Associativity
()  []  ->  . ++ -- left to right
!  ~  ++ --  +  -  *  & (type) sizeof right to left
*  /  % left to right
+  - left to right
<<  >> left to right
<  <=  >  >= left to right
==  != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

⬛ ->, (), and [] have high precedence, with * and & just below

⬛Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53, updated

Unary

Postfix

Binary
Prefix
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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Parsing:  int (*(*f())[13])()
int (*(*f())[13])() f

int (*(*f())[13])() f is a function
that returns a ptr

int (*(*f())[13])() f is a ptr to a function
that returns a ptr to an
array of 13 ptrs

int (*(*f())[13])() f is a a function
that returns a ptr to an 
array of 13

int (*(*f())[13])() f is a ptr to a function
that returns a ptr to an 
array of 13 ptrs to functions
returning an int

int (*(*f())[13])() f is a function
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C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers  to functions 
returning pointers to array[5] of ints

Source: K&R Sec 5.12
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A better way: int (*(*f())[13])()
// pointer to a function returning an int

typedef int (*pfri)();

// An array of thirteen pfri’s

typedef pfri arr13pfri[13];

// pointer to an array of thirteen pfri’s

typedef arr13pfri* ptrToArr;

// ptr to function returning a 

// ptr to an array of 13 pointer’s to functions which return ints

typedef ptrToArr (*pfrArr13fri)();
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Dereferencing Bad Pointers
⬛ The classic scanf bug

int val;

...

scanf("%d", val);
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Reading Uninitialized Memory
⬛ Assuming that heap data is initialized to zero

⬛ Can avoid by using calloc

/* return y = Ax */
int *matvec(int **A, int *x) { 
   int *y = malloc(N*sizeof(int));
   int i, j;

   for (i=0; i<N; i++)
      for (j=0; j<N; j++)
         y[i] += A[i][j]*x[j];
   return y;
}
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Overwriting Memory
⬛ Allocating the (possibly) wrong sized object

⬛ Can you spot the bug?

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
   p[i] = malloc(M*sizeof(int));
}
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Overwriting Memory
⬛ Off-by-one errors

char **p;

p = malloc(N*sizeof(char *));

for (i=0; i<=N; i++) {
   p[i] = malloc(M*sizeof(char));
}

char *p;

p = malloc(strlen(s));
strcpy(p,s);
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Overwriting Memory
⬛ Not checking the max string size

⬛ Basis for classic buffer overflow attacks

char s[8];
int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory
⬛ Misunderstanding pointer arithmetic

int *search(int *p, int val) {
   
   while (p && *p != val)
      p += sizeof(int);

   return p;
}
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Overwriting Memory
⬛ Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
   int *packet;
   packet = binheap[0];
   binheap[0] = binheap[*size - 1];
   *size--;
   Heapify(binheap, *size, 0);
   return(packet);
}
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Referencing Nonexistent Variables
⬛ Forgetting that local variables disappear when a function 

returns

int *foo () {
   int val;

   return &val;
}  
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Freeing Blocks Multiple Times
⬛ Nasty!

x = malloc(N*sizeof(int));
        <manipulate x>
free(x);

y = malloc(M*sizeof(int));
        <manipulate y>
free(x);
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Referencing Freed Blocks
⬛ Evil! 

x = malloc(N*sizeof(int));
  <manipulate x>
free(x);
   ...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++)
   y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)
⬛ Slow, long-term killer! 

foo() {
   int *x = malloc(N*sizeof(int));
   ...
   return;
}
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Failing to Free Blocks (Memory Leaks)
⬛ Freeing only part of a data structure

struct list {
   int val;
   struct list *next;
};

foo() {
   struct list *head = malloc(sizeof(struct list));
   head->val = 0;
   head->next = NULL;
   <create and manipulate the rest of the list>
    ...
   free(head);
   return;
}
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Dealing With Memory Bugs
⬛ Debugger: gdb

▪ Good for finding  bad pointer dereferences

▪ Hard to detect the other memory bugs

⬛ Data structure consistency checker
▪ Runs silently, prints message only on error

▪ Use as a probe to zero in on error

⬛ Binary translator:  valgrind 
▪ Powerful debugging and analysis technique

▪ Rewrites text section of executable object file

▪ Checks each individual reference at runtime

▪ Bad pointers, overwrites, refs outside of allocated block

⬛ glibc malloc contains checking code
▪ setenv MALLOC_CHECK_ 3 


