
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization: Basics

15-213: Introduction to Computer Systems
24th Lecture, July 26, 2018

Instructor:

Brian Railing

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

⬛ Threads review

⬛ Sharing

⬛ Mutual exclusion

⬛ Semaphores

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Traditional View of a Process

⬛ Process = process context + code, data, and stack

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Stack
SP

Shared libraries

Run-time heap

0

Read/write data

Read-only code/dataPC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Alternate View of a Process

⬛ Process = thread + code, data, and kernel context

Shared libraries

Run-time heap

0

Read/write dataThread context:

 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

 Code, data, and kernel context

Read-only code/data

Stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A Process With Multiple Threads
⬛ Multiple threads can be associated with a process

▪ Each thread has its own logical control flow
▪ Each thread shares the same code, data, and kernel context
▪ Each thread has its own stack for local variables

▪ but not protected from other threads
▪ Each thread has its own thread id (TID)

Thread 1 context:

 Data registers
 Condition codes
 SP

1
 PC

1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:

 VM structures
 Descriptor table
 brk pointer

Thread 2 context:

 Data registers
 Condition codes
 SP

2
 PC

2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variables in Threaded C Programs

⬛ Question: Which variables in a threaded C program are
shared?
▪ The answer is not as simple as “global variables are shared” and

“stack variables are private”

⬛ Def: A variable x is shared if and only if multiple threads
reference some instance of x.

⬛ Requires answers to the following questions:
▪ What is the memory model for threads?

▪ How are instances of variables mapped to memory?

▪ How many threads might reference each of these instances?

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Memory Model

⬛ Conceptual model:
▪ Multiple threads run within the context of a single process

▪ Each thread has its own separate thread context
▪ Thread ID, stack, stack pointer, PC, condition codes, and GP registers

▪ All threads share the remaining process context
▪ Code, data, heap, and shared library segments of the process virtual address space

▪ Open files and installed handlers

⬛ Operationally, this model is not strictly enforced:
▪ Register values are truly separate and protected, but…
▪ Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model
is a source of confusion and errors

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Program to Illustrate Sharing

char **ptr; /* global var */

int main(int argc, char *argv[])
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Peer threads reference main thread’s stack
indirectly through global ptr variable

sharing.c

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Variable Instances to Memory

⬛ Global variables
▪ Def: Variable declared outside of a function

▪ Virtual memory contains exactly one instance of any global variable

⬛ Local variables
▪ Def: Variable declared inside function without static attribute

▪ Each thread stack contains one instance of each local variable

⬛ Local static variables
▪ Def: Variable declared inside function with the static attribute

▪ Virtual memory contains exactly one instance of any local static
variable.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char **ptr; /* global var */

int main(int main, char *argv[])
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };

 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 Pthread_exit(NULL);
}

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;

 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

Mapping Variable Instances to Memory
Global var: 1 instance (ptr [data])

Local static var: 1 instance (cnt [data])

Local vars: 1 instance (i.m, msgs.m, tid.m)

Local var: 2 instances (
 myid.p0 [peer thread 0’s stack],
 myid.p1 [peer thread 1’s stack]
)

sharing.c

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
⬛ Which variables are shared?

⬛ Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

■ ptr, cnt, and msgs are shared

■ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no

yes yes yes
no yes no
no no yes

char **ptr; /* global */
int main(int argc, char *argv[]) {
 int i;
 pthread_t tid;
 char *msgs[2] = {“Hello from foo",
 "Hello from bar"};
 ptr = msgs;
 for (i = 0; i < 2; i++)
 Pthread_create(&tid,…, (void *)i);
 Pthread_exit(NULL);
}

/* thread routine */
void *thread(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;

 printf("[%d]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shared Variable Analysis
⬛ Which variables are shared?

⬛ Answer: A variable x is shared iff multiple threads
reference at least one instance of x. Thus:

■ ptr, cnt, and msgs are shared

■ i and myid are not shared

Variable Referenced by Referenced by Referenced by
instance main thread? peer thread 0? peer thread 1?

ptr
cnt
i.m
msgs.m
myid.p0
myid.p1

yes yes yes
no yes yes
yes no no

yes yes yes
no yes no
no no yes

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronizing Threads

⬛ Shared variables are handy...

⬛ …but introduce the possibility of nasty synchronization
errors.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>

cnt should equal 20,000.

What went wrong?
badcnt.c

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assembly Code for Counter Loop

for (i = 0; i < niters; i++)
 cnt++;

C code for counter loop in thread i

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

H
i
 : Head

T
i
 : Tail

L
i

: Load cnt
U

i
 : Update cnt

S
i
 : Store cnt

Asm code for thread
i

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution

⬛ Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!
▪ I

i
 denotes that thread i executes instruction I

▪ %rdx
i
is the content of %rdx in thread i’s context

H
1

L
1

U
1

S
1

H
2

L
2

U
2

S
2

T
2

T
1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instr
i

cnt%rdx
1

OK

-
-
-
-
-
1
2
2
2
-

%rdx
2

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution

⬛ Key idea: In general, any sequentially consistent interleaving
is possible, but some give an unexpected result!
▪ I

i
 denotes that thread i executes instruction I

▪ %rdx
i
is the content of %rdx in thread i’s context

H
1

L
1

U
1

S
1

H
2

L
2

U
2

S
2

T
2

T
1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instr
i

cnt%rdx
1

OK

-
-
-
-
-
1
2
2
2
-

%rdx
2

Thread 1
critical section

Thread 2
critical section

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

⬛ Incorrect ordering: two threads increment the counter,
but the result is 1 instead of 2

H
1

L
1

U
1

H
2

L
2

S
1

T
1

U
2

S
2

T
2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instr
i

cnt%rdx
1

-
-
-
-
0
-
-
1
1
1

%rdx
2

Oops!

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concurrent Execution (cont)

⬛ How about this ordering?

⬛ We can analyze the behavior using a progress graph

H
1

L
1

H
2

L
2

U
2

S
2

U
1

S
1

T
1

T
2

1
1
2
2
2
2
1
1
1
2

i (thread) instr
i

cnt%rdx
1

%rdx
2

0
0

0
1
1 1

1
1 1

1 Oops!
1

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Progress Graphs

A progress graph depicts
the discrete execution
state space of concurrent
 threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst

1
, Inst

2
).

E.g., (L
1
, S

2
) denotes state

where thread 1 has
completed L

1
 and thread

2 has completed S
2
.H

1
L

1
U

1
S

1
T

1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

(L
1
, S

2
)

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trajectories in Progress Graphs

A trajectory is a sequence of legal
state transitions that describes one
possible concurrent execution of the
threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

L, U, and S form a critical
section with respect to the
shared variable cnt

Instructions in critical
sections (wrt some shared
variable) should not be
interleaved

Sets of states where such
interleaving occurs form
unsafe regions

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Critical Sections and Unsafe Regions

H
1

L
1

U
1

S
1

T
1

H
2

L
2

U
2

S
2

T
2

Thread 1

Thread 2

critical section wrt cnt

critical
section

wrt
cnt

Unsafe region

Def: A trajectory is safe iff it does
not enter any unsafe region

Claim: A trajectory is correct (wrt
cnt) iff it is safe

unsafe

safe

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

badcnt.c

Variable main thread1 thread2

cnt yes* yes yes

niters.m yes no no

tid1.m yes no no

i.1 no yes no

i.2 no no yes

niters.1 no yes no

niters.2 no no yes

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Enforcing Mutual Exclusion

⬛ Question: How can we guarantee a safe trajectory?

⬛ Answer: We must synchronize the execution of the threads so
that they can never have an unsafe trajectory.
▪ i.e., need to guarantee mutually exclusive access for each critical

section.

⬛ Classic solution:
▪ Semaphores (Edsger Dijkstra)

⬛ Other approaches (out of our scope)
▪ Mutex and condition variables (Pthreads)

▪ Monitors (Java)

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores

⬛ Semaphore: non-negative global integer synchronization variable.
Manipulated by P and V operations.

⬛ P(s)
▪ If s is nonzero, then decrement s by 1 and return immediately.

▪ Test and decrement operations occur atomically (indivisibly)

▪ If s is zero, then suspend thread until s becomes nonzero and the thread is
restarted by a V operation.

▪ After restarting, the P operation decrements s and returns control to the caller.

⬛ V(s):
▪ Increment s by 1.

▪ Increment operation occurs atomically

▪ If there are any threads blocked in a P operation waiting for s to become
non-zero, then restart exactly one of those threads, which then completes its P
operation by decrementing s.

⬛ Semaphore invariant: (s >= 0)

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Semaphores

⬛ Semaphore: non-negative global integer synchronization
variable

⬛ Manipulated by P and V operations:
▪ P(s): [while (s == 0) wait(); s--;]

▪ Dutch for "Proberen" (test)

▪ V(s): [s++;]

▪ Dutch for "Verhogen" (increment)

⬛ OS kernel guarantees that operations between brackets [] are
executed indivisibly

▪ Only one P or V operation at a time can modify s.

▪ When while loop in P terminates, only that P can decrement s

⬛ Semaphore invariant: (s >= 0)

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

C Semaphore Operations

Pthreads functions:

#include <semaphore.h>

int sem_init(sem_t *s, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:

#include "csapp.h”

void P(sem_t *s); /* Wrapper function for sem_wait */
void V(sem_t *s); /* Wrapper function for sem_post */

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

badcnt.c: Improper Synchronization

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 long niters;
 pthread_t tid1, tid2;

 niters = atoi(argv[1]);
 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * niters))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

How can we fix this using
semaphores?

badcnt.c

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Using Semaphores for Mutual Exclusion

⬛ Basic idea:
▪ Associate a unique semaphore mutex, initially 1, with each shared

variable (or related set of shared variables).

▪ Surround corresponding critical sections with P(mutex) and

V(mutex) operations.

⬛ Terminology:
▪ Binary semaphore: semaphore whose value is always 0 or 1

▪ Mutex: binary semaphore used for mutual exclusion

▪ P operation: “locking” the mutex

▪ V operation: “unlocking” or “releasing” the mutex

▪ “Holding” a mutex: locked and not yet unlocked.

▪ Counting semaphore: used as a counter for set of available
resources.

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization

⬛ Define and initialize a mutex for the shared variable cnt:

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 sem_init(&mutex, 0, 1); /* mutex = 1 */

⬛ Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

goodcnt.c: Proper Synchronization

⬛ Define and initialize a mutex for the shared variable cnt:

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 sem_init(&mutex, 0, 1); /* mutex = 1 */

⬛ Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude slower
than badcnt.c.

goodcnt.c

OK cnt=2000000 BOOM! cnt=1036525 Slowdown

real 0m0.138s 0m0.007s 20X
user 0m0.120s 0m0.008s 15X
sys 0m0.108s 0m0.000s NaN

And slower means much slower!

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

H
1

P(s) V(s) T
1

Thread 1

Thread 2

L
1

U
1

S
1

H
2

P(s)

V(s)

T
2

L
2

U
2

S
2

Initially
s = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H
1

P(s) V(s) T
1

Thread 1

Thread 2

L
1

U
1

S
1

H
2

P(s)

V(s)

T
2

L
2

U
2

S
2

Initially
s = 1

1 0 0 0

0

-1

Unsafe region

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H
1

P(s) V(s) T
1

Thread 1

Thread 2

L
1

U
1

S
1

H
2

P(s)

V(s)

T
2

L
2

U
2

S
2

Initially
s = 1

1 0 0 0

0

Unsafe region

0 1

0

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsafe region

Why Mutexes Work

Provide mutually exclusive
access to shared variable by
surrounding critical section
with P and V operations on
semaphore s (initially set to 1)

Semaphore invariant
creates a forbidden region
that encloses unsafe region
and that cannot be entered by
any trajectory.

H
1

P(s) V(s) T
1

Thread 1

Thread 2

L
1

U
1

S
1

H
2

P(s)

V(s)

T
2

L
2

U
2

S
2

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

0 0 -1 -1 -1 -1 0 0

0 0
-1 -1 -1 -1

0 0

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

Initially
s = 1

Forbidden region

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

⬛ Programmers need a clear model of how variables are
shared by threads.

⬛ Variables shared by multiple threads must be protected
to ensure mutually exclusive access.

⬛ Semaphores are a fundamental mechanism for enforcing
mutual exclusion.

