Thread-Level Parallelism

15-213 / 18-213: Introduction to Computer Systems "26th" Lecture, August 1, 2018

Instructor:

Sol Boucher

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Consistency Models

What happens when multiple threads are reading & writing shared state

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
- Divide-and conquer parallelism
 - Example: Parallel quicksort

Typical Multicore Processor

Multiple processors operating with coherent view of memory

Out-of-Order Processor Structure

- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel

Hyperthreading Implementation

- Replicate instruction control to process K instruction streams
- K copies of all registers
- Share functional units

Benchmark Machine

- Get CPU specs from lscpu or /proc/cpuinfo
- Shark Machines
 - Intel Xeon E5520 @ 2.27 GHz
 - Nehalem, ca. 2010
 - 8 Cores
 - Each can do 2x hyperthreading

Exploiting parallel execution

- So far, we've used threads to handle multiple clients' I/O
- Multicore CPUs offer another opportunity
 - Spread work over threads executing in parallel on N cores
 - Happens automatically, if many independent tasks
 - e.g., running many applications or serving many clients
 - Can also write code to make one big task go faster
 - by organizing it as multiple parallel sub-tasks
- Shark machines can execute 16 threads at once
 - 8 cores, each with 2-way hyperthreading
 - Theoretical speedup of 16X
 - never achieved in our benchmarks

Memory Consistency

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses

Non-Coherent Cache Scenario

Write-back caches, without coordination between them

print 1

print 100

Memory Consistency

Thread consistency constraints Wa——→ Rb

Wb → Ra

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses

Memory Consistency

Thread consistency constraints
Wa → Rb
Wb → Ra

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses
- Sequential consistency
 - Overall effect consistent with each individual thread
 - Otherwise, arbitrary interleaving

Sequential Consistency Example

- Impossible outputs
 - **100, 1** and **1, 100**
 - Would require reaching both Ra and Rb before Wa and Wb

Non-Coherent Cache Scenario

Write-back caches, without coordination between them

print 1

print 100

Non-Sequentially Consistent Scenario

Thread consistency constraints violated due to out-of-order execution

Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value Shared Readable copy

Exclusive Writeable copy

print 2

print 200

- When cache sees request for one of its E-tagged blocks
 - Supply value from cache
 - Set tag to S

Memory Models

- Sequentially Consistent:
 - Each thread executes in proper order, any interleaving
- To ensure, requires
 - Proper cache/memory behavior
 - Proper intra-thread ordering constraints

Today

- Parallel Computing Hardware
 - Multicore
 - Multiple separate processors on single chip
 - Hyperthreading
 - Efficient execution of multiple threads on single core
- Consistency Models
 - What happens when multiple threads are reading & writing shared state
- Thread-Level Parallelism
 - Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
 - Divide-and conquer parallelism
 - Example: Parallel quicksort

Summation Example

- Sum numbers 0, ..., N-1
 - Should add up to (N-1)*N/2
- Partition into K ranges
 - N/K values each
 - Each of the t threads processes 1 range
 - Accumulate leftover values serially
- Method #1: All threads update single global variable
 - 1A: No synchronization
 - 1B: Synchronize with pthread semaphore
 - 1C: Synchronize with pthread mutex
 - "Binary" semaphore. Only values 0 & 1

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;
```

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;
/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;
```

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;
/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;
/* Number of elements summed by each thread */
size_t nelems_per_thread;
/* Keep track of thread IDs */
pthread_t tid[MAXTHREADS];
/* Identify each thread */
int myid[MAXTHREADS];
```

Accumulating in Single Global Variable: Operation

```
nelems_per_thread = nelems / nthreads;
/* Set global value */
                                                   Thread routine
global_sum = 0;
                                    Thread ID
/* Create threads and wait for them to finish
for (i = 0; i < nthreads)/i++) {
   myid[i] = i;
   Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
for (i = 0; i < nthreads; i++)
                                                 Thread arguments
   Pthread_join(tid[i], NULL);
                                                     (void *p)
result = global_sum;
/* Add leftover elements */
for (e = nthreads * nelems_per_thread; e < nelems; e++)</pre>
    result += e;
```

Thread Function: No Synchronization

```
void *sum_race(void *vargp)
{
   int myid = *((int *)vargp);
   size_t start = myid * nelems_per_thread;
   size_t end = start + nelems_per_thread;
   size_t i;

for (i = start; i < end; i++) {
     global_sum += i;
   }
   return NULL;
}</pre>
```

Unsynchronized Performance

- $N = 2^{30}$
- Best speedup = 2.86X
- Gets wrong answer when > 1 thread!

Thread Function: Semaphore / Mutex

Semaphore

```
void *sum_sem(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size t i;
    for (i = start; i < end; i++) {
      sem_wait(&semaphore);
      qlobal_sum += i;
      sem_post(&semaphore);
    return NULL;
```

Mutex

```
pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);
```

Semaphore / Mutex Performance

- Terrible Performance
 - 2.5 seconds VS. ~10 minutes
- Mutex 3X faster than semaphore
- Clearly, neither is successful

What is main reason for poor performance?

Separate Accumulation

- Method #2: Each thread accumulates into separate variable
 - 2A: Accumulate in contiguous array elements
 - 2B: Accumulate in spaced-apart array elements
 - 2C: Accumulate in registers

```
/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING];
/* Spacing between accumulators */
size_t spacing = 1;
```

Separate Accumulation: Operation

```
nelems_per_thread = nelems / nthreads;
/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {</pre>
   myid[i] = i;
   psum[i*spacing] = 0;
   Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
for (i = 0; i < nthreads; i++)
   Pthread_join(tid[i], NULL);
result = 0;
/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)
   result += psum[i*spacing];
/* Add leftover elements */
for (e = nthreads * nelems_per_thread; e < nelems; e++)</pre>
    result += e;
```

Thread Function: Memory Accumulation

Where is the mutex?

```
void *sum_global(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;
    size_t index = myid*spacing;
    psum[index] = 0;
    for (i = start; i < end; i++) {</pre>
        psum[index] += i;
    return NULL;
```

Memory Accumulation Performance

- Clear threading advantage
 - Adjacent speedup: 5 X
 - Spaced-apart speedup: 13.3 X (Only observed speedup > 8)
- Why does spacing the accumulators apart matter?

False Sharing

- Coherency maintained on cache blocks
- To update psum[i], thread i must have exclusive access
 - Threads sharing common cache block will keep fighting each other for access to block

False Sharing Performance

- Best spaced-apart performance 2.8 X better than best adjacent
- Demonstrates cache block size = 64
 - 8-byte values
 - No benefit increasing spacing beyond 8

Thread Function: Register Accumulation

```
void *sum_local(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;
    size_t index = myid*spacing;
    data_t sum = 0;
    for (i = start; i < end; i++) {</pre>
       sum += i;
    psum[index] = sum;
    return NULL;
```

Register Accumulation Performance

- Clear threading advantage
 - Speedup = 7.5 X

Beware the speedup metric!

2X better than fastest memory accumulation

Lessons learned

- Sharing memory can be expensive
 - Pay attention to true sharing
 - Pay attention to false sharing
- Use registers whenever possible
 - (Remember cachelab)
 - Use local cache whenever possible
- Deal with leftovers
- When examining performance, compare to best possible sequential implementation

A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort
- Sequential quicksort of set of values X
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values ≥ p
 - Recursively sort L to get L'
 - Recursively sort R to get R´
 - Return L': p: R'

Sequential Quicksort Visualized

Sequential Quicksort Visualized

Sequential Quicksort Code

```
void qsort_serial(data_t *base, size_t nele) {
  if (nele <= 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
 /* Partition returns index of pivot */
  size_t m = partition(base, nele);
  if (m > 1)
    qsort_serial(base, m);
  if (nele-1 > m+1)
    gsort_serial(base+m+1, nele-m-1);
```

- Sort nele elements starting at base
 - Recursively sort L or R if has more than one element

Parallel Quicksort

- Parallel quicksort of set of values X
 - If $N \leq N$ thresh, do sequential quicksort
 - Else
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values ≥ p
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return L': p:R'

Parallel Quicksort Visualized

Thread Structure: Sorting Tasks

Task Threads

- Task: Sort subrange of data
 - Specify as:
 - base: Starting address
 - **nele**: Number of elements in subrange
- Run as separate thread

Small Sort Task Operation

Sort subrange using serial quicksort

Large Sort Task Operation

Top-Level Function (Simplified)

```
void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures

Recursive sort routine (Simplified)

- Small partition: Sort serially
- Large partition: Spawn new sort task

Sort task thread (Simplified)

```
/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
    sort_task_t *t = (sort_task_t *) vargp;
    data_t *base = t->base;
    size_t nele = t->nele;
    task_queue_ptr tq = t->tq;
    free(vargp);
    size_t m = partition(base, nele);
    if (m > 1)
        tqsort_helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort_helper(base+m+1, nele-m-1, tq);
    return NULL;
```

- Get task parameters
- Perform partitioning step
- Call recursive sort routine on each partition

Parallel Quicksort Performance

- Serial fraction: Fraction of input at which do serial sort
- Sort 2³⁷ (134,217,728) random values
- Best speedup = 6.84X

Parallel Quicksort Performance

- Good performance over wide range of fraction values
 - F too small: Not enough parallelism
 - F too large: Thread overhead + run out of thread memory

Amdahl's Law

Overall problem

- Total sequential time required
- p Fraction of total that can be sped up $(0 \le p \le 1)$
- k Speedup factor

Resulting Performance

- $T_k = pT/k + (1-p)T$
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
- Maximum possible speedup
 - $k = \infty$
 - $T_{\infty} = (1-p)T$

Amdahl's Law Example

Overall problem

T = 10 Total time required

p = 0.9 Fraction of total which can be sped up

k = 9 Speedup factor

Resulting Performance

$$T_{0} = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0$$

Maximum possible speedup

$$T_{\infty} = 0.1 * 10.0 = 1.0$$

Amdahl's Law & Parallel Quicksort

Sequential bottleneck

- Top-level partition: No speedup
- Second level: ≤ 2X speedup
- k^{th} level: $\leq 2^{k-1}X$ speedup

Implications

- Good performance for small-scale parallelism
- Would need to parallelize partitioning step to get large-scale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992

Lessons Learned

- Must have parallelization strategy
 - Partition into K independent parts
 - Divide-and-conquer
- Inner loops must be synchronization free
 - Synchronization operations very expensive
- Watch out for hardware artifacts
 - Need to understand processor & memory structure
 - Sharing and false sharing of global data
- Beware of Amdahl's Law
 - Serial code can become bottleneck
- You can do it!
 - Achieving modest levels of parallelism is not difficult
 - Set up experimental framework and test multiple strategies