Carnegie Mellon

Final Exam Review

15-213: Introduction to Computer Systems
August 3, 2018

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

Outline

m Exam Details

m Thread Synchronization
m Signals

m Processes

m Virtual Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

Final Exam Details

m Review server

m Exam format
= Eight problems, similar in format to midterm

= Five (5) hours to complete exam
= Problems cover the entire semester, focus on second half
m Final Exam on Wednesday, August 8
= You may bring two (2) double-sided, 8.5” x 11” sheets of notes

= TA will verify your notes and CMU ID

= Navigate to exam server and use special exam password

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

Final Exam Topics

m Potential areas we can test you on
= 10
= Malloc
= Multiple Choice/General Knowledge
« From lecture, labs, textbook, ...
= Processes
= Signals
* Threads
= Thread Synchronization

= Virtual Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Thread Synchronization

m Three types of locks
= Mutex
= Semaphore

= Reader-Writer lock
s When would you want to use one over the others?

m Rule of thumb: protect shared variables and 10 to the
same file descriptor

m Avoid deadlocks: acquire locks in the same order in each
thread

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 5

Carnegie Mellon

Threads Questions

m What is a scenario where a reader-writer lock would be a
more appropriate choice than a mutex?

= What happens when you join on a detached thread?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 6

Carnegie Mellon

Threads Questions

m How many characters does “hello.txt” contain after this
example?
void *work (void *data)
{
write(* (int *) data, "a", 1);
return NULL;

int main (void)
{
int i, fd = open("hello.txt", O_RDWR);
pthread t tids[NTHREADS];
for (1 = 0; i < NTHREADS; ++i) {
pthread t tid;
pthread create(&tid, NULL, work, &fd);

pthread detach(tid);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third

Carnegie Mellon

Signals and Handling Reminders

m Signals can happen at any time

= Control when through blocking signals

m Signals also communicate that events have occurred

= What event(s) correspond to each signal?

m Write separate routines for receiving (i.e., signals)

= What can you do / not do in a signal handler?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 8

Carnegie Mellon

Signal Blocking

m We need to block and unblock signals. Which sequence?

pid t pid; sigset t mysigs, prev;
sigemptyset (&mysigs) ;

sigaddset (&mysigs, SIGCHLD) ;

sigaddset (&mysigs, SIGINT) ;

// need to block signals. what to use?

// sigprocmask (SIG BLOCK, &mysigs, &prev);
// B. sigprocmask (SIG SETMASK, &mysigs, é&prev);

if ((pid = fork()) == 0) {
// need to unblock signals. what to use?
/* A. sigprocmask (SIG_BLOCK, &mysigs, &prev);
* B. sigprocmask (SIG_UNBLOCK, &mysigs, &prev);
*@ sigprocmask (SIG_SETMASK, &prev, NULL);
* D. sigprocmask (SIG BLOCK, &prev, NULL);
* E. sigprocmask (SIG_SETMASK, &mysigs, é&prev);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 9

Signal Delivery

Child calls kill(parent, SIGUSR{1,2}) between 2-4 times.
What sequence of kills may only print 1?

Can you guarantee printing 2?

m What is the range of values printed?

int counter = 0; int main(int argc, char** argv) ({
void handler (int sig) { signal (SIGUSR1, handler);
counter++; signal (SIGUSR2, handler) ;
} int parent = getpid();
int child = fork();
void fun(pid t parent) ({ if (child == 0) {
/* insert code here */ fun (parent) ;
} exit (0) ;
}
sleep (1) ;

waitpid(child, NULL, O0);
printf ("Received %d USR{1l,2} signals\n", counter);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third See 10

Carnegie Mellon

Processes

m Parent and child run in parallel as different processes

m fork(): call once, return twice
- Initial memory contents are same
- Afterwards, no changes are shared between the two

m execve(): never returns (except on error)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 11

Carnegie Mellon

Processes Question

m What is printed to the terminal?

const char *msg = "hello there";
pid t cpid;
int fd = open("hello.txt", O _RDWR) ;
char contents[12];
ssize_ t nbytes;
if ((cpid = fork()) == 0) {
write (fd, msg, strlen(msqg));
close (£d) ;
exit (0);
}
waitpid(cpid, NULL, O0);
nbytes = read(fd, contents, strlen(msqg));
contents[nbytes] = '\0';
close (£d) ;
printf ("%$s\n", contents);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 12

Carnegie Mellon

Virtual Memory

m Virtual to physical address conversion (TLB lookup)
m TLB miss

m Page fault, page loaded from disk

m TLB updated, check permissions

m L1 Cache miss (and L2 ... and)

m Request sent to memory

s Memory sends data to processor

m Cache updated

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third 13

Carnegie Mellon

Virtual Memory Example

m Translate 0x15213, given the contents of the TLB and the first 32
entries of the page table below.

= 1MB Virtual Memory VPN PPN Valid VPN PPN Valid
m 256KB Physical Memory 0o 17 1 0 2% 0
m 4KB page size o 28 1 M A7 0
02 14 1 12 OE 1
Index Tag PPN Valid 03 0B 0 13 10 1
04 26 0 $4—43 1
0O 05 13 1 05 13 0 15 18 1
3F 15 1 06 OF 1 16 31 1
07 10 1 17 12 0
1 10 OF 0
08 1C 0 18 23 1
05 18 1 09 25 1 19 04 0
2 1F 01 1 0A 31 0 1A 0oC 1
1 4F 0 0B 16 1 1B 2B 0
oc 01 0 1C 1E 0
3 03 2B 1 oD 15 0 1D 3E 1
OE o0C 0 1E 27 1

Bryant and O’Hallaron, Computer Systems: A Pro'LPmmer'g”érspective,ofhird 14

Carnegie Mellon

|O Recap

m How does read offset?

m How does dup2 work?

= What is the order of arguments?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

|O Recap

m How does read offset?
* |Incremented by number of bytes read

* |mportant: read and write offset the same fd

m How does dup2 work?

= What is the order of arguments?

= dup2(oldfd, newfd)
« Example: dup2(fd2, fd3)
« Any read/write from fd3 now happen from fd2
« All file offsets are shared

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

IO and Processes

//foo.txt = “abcdefg”

fdl = open (“foo.txt”, O RDONLY) ; * How are fd shared between
pid = fork(); processes?
fd2 = open(“foo.txt”, O_RDONLY); e How does dup2 work from parent
. . to child?
th(prd==0) | e How are file offsets shared between
read (fdl, &c, sizeof (c));
brintf(“ac”, o) ; processes?
dup2 (£d1, £d2);
//NOTE: the child did not exit here!
}
wait (NULL) ;
read (fd2, &c, sizeof (c));
printf (“sc”, c); Take out a piece of paper
read(fdl, &c, sizeof(c)); and draw out a process

printf (“%c”, c);

diagram. What is printed?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

IO and Processes

//foo.txt = “abcdefg” Outcome

fdl = open(“foo.txt”, O RDONLY) ;
pid = fork();
fd2 = open(“foo.txt”, O RDONLY) ;

e Child always runs first. Parent
cannot run until child has

terminated
if (pid==0) { e fd1is shared between parent and
read (fdl, &c, sizeof(c)); child, but parent and child have
printf (%c”, c); separate fd2
dupz (fdl, f£d2); * Printed out: abcad

//NOTE: the child did not exit here!
}
walit (NULL) ;
read (fd2, &c, sizeof(c));
printf (“%c”, c);
read (fdl, &c, sizeof(c));

printf (“%c”, c);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

