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Midterm Exam This Week

⬛ 3 hours

⬛ Regrade requests after (1 hour)

⬛ 1 double-sided page of notes
▪ No preworked problems from prior exams

⬛ 7 questions

⬛ Report to the room
▪ TA will verify your notes and ID

▪ TAs will give you your exam server password

▪ Login via Andrew, then navigate to exam server and use special 
exam password
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Stack Review

⬛ In the following questions, treat them like the exam
▪ Can you answer them from memory?

▪ Write down your answer

▪ Talk to your neighbor, do you agree?

⬛ Discuss:
 What is the stack used for?
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Stack Manipulation

⬛ We execute:

mov $0x15213, %rax
pushq %rax

⬛ Which of the following instructions will place the value 
0x15213 into %rcx?

1) mov (%rsp), %rcx
2) mov 0x8(%rsp), %rcx
3) mov %rsp, %rcx
4) popq %rcx
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Stack is memory

⬛ We execute:

mov $0x15213, %rax
pushq %rax
popq %rax

⬛ If we now execute:       mov -0x8(%rsp), %rcx
what value is in %rcx?

1) 0x0 / NULL

2) Seg fault

3) Unknown

4) 0x15213
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x86-64 Calling Convention

⬛ What does the calling convention govern (select all that 
apply)?

1) How large each type is.

2) How to pass arguments to a function.

3) The alignment of fields in a struct.

4) When registers can be used by a function.

5) Whether a function can call itself.
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Register Usage
⬛ The calling convention gives meaning to every register,

describe the following 9 registers: 

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save
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Register Usage

⬛ Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx
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Register Usage

⬛ Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx Until this point, the callee has
preserved the callee-save value.
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Sometimes arguments are implicit

What is the minimum number of arguments that “rsr” takes?  

How many of those registers are changed in the function before the 
function call?

(Note, %sil is the low 8 bits of %rsi)

   0x0400596 <+0>:     cmp    %sil,(%rdi,%rdx,1)
   0x040059a <+4>:     je     0x4005ae <rsr+24>
   0x040059c <+6>:     sub    $0x8,%rsp
   0x04005a0 <+10>:    sub    $0x1,%rdx     
   0x04005a4 <+14>:    callq  0x400596 <rsr>
   0x04005a9 <+19>:    add    $0x8,%rsp
   0x04005ad <+23>:    retq
   0x04005ae <+24>:    mov    %edx,%eax
   0x04005b0 <+26>:    retq
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3
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Arguments can already be “correct”

⬛ rsr does not modify s and t, so the arguments in those 
registers are always correct

int rsr(char* s, char t, size_t pos)
{
  if (s[pos] == t) return pos;
  return rsr(s, t, pos - 1);
}
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Recursive calls

⬛ Draw the stack at the end of 4 calls to doThis. 

⬛ Describe the stack after doThis(4) returns.
void doThis(int count)
{
    char buf[8];
    strncpy(buf, “Hi 15213”, sizeof(buf));
    if (count > 0) doThis(count – 1);
}

sub $0x18, %rsp
mov $0x3331323531206948,%rax
test %edi, %edi
mov    %rax,(%rsp)
...
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Recursive calls

⬛ Draw the stack at the end of 4 calls to doThis.

⬛ Describe the stack after doThis(4) returns.
void doThis(int count)
{
    char buf[8];
    strncpy(buf, “Hi 15213”, sizeof(buf));
    if (count > 0) doThis(count – 1);
}

sub $0x18, %rsp
mov $0x3331323531206948,%rax
test %edi, %edi
mov    %rax,(%rsp)
...

ascii representation of Hi 
15213 in little endian

The stack will be normal 
– no buffer overflow with 
the local variables 
allocated on the stack 
and the calling function’s 
return address on the 
stack

Also there will be 4 
repeats of the 4 lines
*doThis return address*
 X (8 bytes of unknown)
 X (8 bytes of unknown)
3331323531206948
above the current stack 
pointer (Note the string 
is stored in array index 
order in the stack)
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Callee, Caller Stack Frames

000000000000068a <foo>:
 68a: 48 83 ec 08          sub    $0x8,%rsp
 68e: e8 cd fe ff ff       callq  560 <rand@plt>
 693: 48 83 c4 08          add    $0x8,%rsp
 697: c3                   retq   

0000000000000698 <main>:
 698: 48 83 ec 08          sub    $0x8,%rsp
 69c: bf 00 00 00 00      mov    $0x0,%edi
 6a1: e8 aa fe ff ff       callq  550 <srand@plt>
 6a6: b8 00 00 00 00     mov    $0x0,%eax
 6ab: e8 da ff ff ff       callq  68a <foo>

At the start of the 
instruction at 68e, 
how large is the 
callee (foo) stack 
frame (the caller 
stack frame includes 
the return address to 
main)?
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Callee, Caller Stack Frames

000000000000068a <foo>:
 68a: 48 83 ec 08          sub    $0x8,%rsp
 68e: e8 cd fe ff ff       callq  560 <rand@plt>
 693: 48 83 c4 08          add    $0x8,%rsp
 697: c3                   retq   

0000000000000698 <main>:
 698: 48 83 ec 08          sub    $0x8,%rsp
 69c: bf 00 00 00 00      mov    $0x0,%edi
 6a1: e8 aa fe ff ff       callq  550 <srand@plt>
 6a6: b8 00 00 00 00      mov    $0x0,%eax
 6ab: e8 da ff ff ff       callq  68a <foo>

At the start of the 
instruction at 68e, 
how large is the 
callee (foo) stack 
frame (the caller 
stack frame includes 
the return address to 
main)?

0x8
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Callee, Caller Stack Frames
⬛ Assume the same functions: foo 

and main (but now compiled 
into an executable instead of 
with gcc -c)

⬛ The output of the command gdb 
x/4gx $rsp is shown below 
for the line 

callq 560 <rand@plt>
0x7fffffffe0c0:
0x0000000000000001
0x00000000004005af

0x7fffffffe0d0:
0x0000000000000000
0x00007ffff7a67d5d

⬛ What is the return address of 
foo?
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0x00000000004005af


