
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 7: Exam Stack Review

15-213: Introduction to Computer Systems
June 26, 2018

Instructor:

Your TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Midterm Exam This Week

⬛ 3 hours

⬛ Regrade requests after (1 hour)

⬛ 1 double-sided page of notes
▪ No preworked problems from prior exams

⬛ 7 questions

⬛ Report to the room
▪ TA will verify your notes and ID

▪ TAs will give you your exam server password

▪ Login via Andrew, then navigate to exam server and use special
exam password

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Review

⬛ In the following questions, treat them like the exam
▪ Can you answer them from memory?

▪ Write down your answer

▪ Talk to your neighbor, do you agree?

⬛ Discuss:
 What is the stack used for?

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Manipulation

⬛ We execute:

mov $0x15213, %rax
pushq %rax

⬛ Which of the following instructions will place the value
0x15213 into %rcx?

1) mov (%rsp), %rcx
2) mov 0x8(%rsp), %rcx
3) mov %rsp, %rcx
4) popq %rcx

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Manipulation

⬛ We execute:

mov $0x15213, %rax
pushq %rax

⬛ Which of the following instructions will place the value
0x15213 into %rcx?

1) mov (%rsp), %rcx
2) mov 0x8(%rsp), %rcx
3) mov %rsp, %rcx
4) popq %rcx

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack is memory

⬛ We execute:

mov $0x15213, %rax
pushq %rax
popq %rax

⬛ If we now execute: mov -0x8(%rsp), %rcx
what value is in %rcx?

1) 0x0 / NULL

2) Seg fault

3) Unknown

4) 0x15213

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack is memory

⬛ We execute:

mov $0x15213, %rax
pushq %rax
popq %rax

⬛ If we now execute: mov -0x8(%rsp), %rcx
what value is in %rcx?

1) 0x0 / NULL

2) Seg fault

3) Unknown

4) 0x15213

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

⬛ What does the calling convention govern (select all that
apply)?

1) How large each type is.

2) How to pass arguments to a function.

3) The alignment of fields in a struct.

4) When registers can be used by a function.

5) Whether a function can call itself.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

⬛ What does the calling convention govern (select all that
apply)?

1) How large each type is.

2) How to pass arguments to a function.

3) The alignment of fields in a struct.

4) When registers can be used by a function.

5) Whether a function can call itself.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
⬛ The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
⬛ The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

4

3

2

1

5

6

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

⬛ Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

⬛ Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx Until this point, the callee has
preserved the callee-save value.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sometimes arguments are implicit

What is the minimum number of arguments that “rsr” takes?

How many of those registers are changed in the function before the
function call?

(Note, %sil is the low 8 bits of %rsi)

 0x0400596 <+0>: cmp %sil,(%rdi,%rdx,1)
 0x040059a <+4>: je 0x4005ae <rsr+24>
 0x040059c <+6>: sub $0x8,%rsp
 0x04005a0 <+10>: sub $0x1,%rdx
 0x04005a4 <+14>: callq 0x400596 <rsr>
 0x04005a9 <+19>: add $0x8,%rsp
 0x04005ad <+23>: retq
 0x04005ae <+24>: mov %edx,%eax
 0x04005b0 <+26>: retq

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sometimes arguments are implicit

What is the minimum number of arguments that “rsr” takes?

How many of those registers are changed in the function before the
function call?

(Note, %sil is the low 8 bits of %rsi)

 0x0400596 <+0>: cmp %sil,(%rdi,%rdx,1)
 0x040059a <+4>: je 0x4005ae <rsr+24>
 0x040059c <+6>: sub $0x8,%rsp
 0x04005a0 <+10>: sub $0x1,%rdx
 0x04005a4 <+14>: callq 0x400596 <rsr>
 0x04005a9 <+19>: add $0x8,%rsp
 0x04005ad <+23>: retq
 0x04005ae <+24>: mov %edx,%eax
 0x04005b0 <+26>: retq

3

1

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arguments can already be “correct”

⬛ rsr does not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size_t pos)
{
 if (s[pos] == t) return pos;
 return rsr(s, t, pos - 1);
}

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive calls

⬛ Draw the stack at the end of 4 calls to doThis.

⬛ Describe the stack after doThis(4) returns.
void doThis(int count)
{
 char buf[8];
 strncpy(buf, “Hi 15213”, sizeof(buf));
 if (count > 0) doThis(count – 1);
}

sub $0x18, %rsp
mov $0x3331323531206948,%rax
test %edi, %edi
mov %rax,(%rsp)
...

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive calls

⬛ Draw the stack at the end of 4 calls to doThis.

⬛ Describe the stack after doThis(4) returns.
void doThis(int count)
{
 char buf[8];
 strncpy(buf, “Hi 15213”, sizeof(buf));
 if (count > 0) doThis(count – 1);
}

sub $0x18, %rsp
mov $0x3331323531206948,%rax
test %edi, %edi
mov %rax,(%rsp)
...

ascii representation of Hi
15213 in little endian

The stack will be normal
– no buffer overflow with
the local variables
allocated on the stack
and the calling function’s
return address on the
stack

Also there will be 4
repeats of the 4 lines
doThis return address
 X (8 bytes of unknown)
 X (8 bytes of unknown)
3331323531206948
above the current stack
pointer (Note the string
is stored in array index
order in the stack)

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee, Caller Stack Frames

000000000000068a <foo>:
 68a: 48 83 ec 08 sub $0x8,%rsp
 68e: e8 cd fe ff ff callq 560 <rand@plt>
 693: 48 83 c4 08 add $0x8,%rsp
 697: c3 retq

0000000000000698 <main>:
 698: 48 83 ec 08 sub $0x8,%rsp
 69c: bf 00 00 00 00 mov $0x0,%edi
 6a1: e8 aa fe ff ff callq 550 <srand@plt>
 6a6: b8 00 00 00 00 mov $0x0,%eax
 6ab: e8 da ff ff ff callq 68a <foo>

At the start of the
instruction at 68e,
how large is the
callee (foo) stack
frame (the caller
stack frame includes
the return address to
main)?

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee, Caller Stack Frames

000000000000068a <foo>:
 68a: 48 83 ec 08 sub $0x8,%rsp
 68e: e8 cd fe ff ff callq 560 <rand@plt>
 693: 48 83 c4 08 add $0x8,%rsp
 697: c3 retq

0000000000000698 <main>:
 698: 48 83 ec 08 sub $0x8,%rsp
 69c: bf 00 00 00 00 mov $0x0,%edi
 6a1: e8 aa fe ff ff callq 550 <srand@plt>
 6a6: b8 00 00 00 00 mov $0x0,%eax
 6ab: e8 da ff ff ff callq 68a <foo>

At the start of the
instruction at 68e,
how large is the
callee (foo) stack
frame (the caller
stack frame includes
the return address to
main)?

0x8

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee, Caller Stack Frames
⬛ Assume the same functions: foo

and main (but now compiled
into an executable instead of
with gcc -c)

⬛ The output of the command gdb
x/4gx $rsp is shown below
for the line

callq 560 <rand@plt>
0x7fffffffe0c0:
0x0000000000000001
0x00000000004005af

0x7fffffffe0d0:
0x0000000000000000
0x00007ffff7a67d5d

⬛ What is the return address of
foo?

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Callee, Caller Stack Frames
⬛ Assume the same functions: foo

and main (but now compiled
into an executable instead of
with gcc -c)

⬛ The output of the command gdb
x/4gx $rsp is shown below
for the line

callq 560 <rand@plt>
0x7fffffffe0c0:
0x0000000000000001
0x00000000004005af

0x7fffffffe0d0:
0x0000000000000000
0x00007ffff7a67d5d

⬛ What is the return address of
foo?

0x00000000004005af

