C Boot Camp

16 June 2020

Eugene
Joshua

..“.

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

eole Viellon

Agenda

« C Basics
. MAN, | SUCK AT THIS GAME.
« Debugging Tools / Demo CAN YOU GIVE ME.
. A FEW POINTERS?
= Appendix | (0x3A28213A
C Standard Library 8;;;3;5;%%
getopt | HATE Yov
stdio.h
stdlib.h Qazﬁg
string.h

ole Viellop

C Basics Handout

ssh <andrewid>(@shark.ics.cs.cmu.edu

cd ~/private
wget http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

tar -xvpf cbootcamp.tar.gz
cd cbootcamp
make

« Contains useful, self-contained C examples
« Slides relating to these examples will have the file

names in the top-right corner!

http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

C Basics

= [he minimum you must know to do well in this class
= You have seen these concepts before
- Make sure you remember them.

= Summary:
- Pointers/Arrays/Structs/Casting
- Memory Management
- Function pointers/Generic Types
- Strings

arneocie Viellop

filel.c file2.c

Variable Declarations & Qualifiers e
. o fun() /7 global variable Znaln
« Global Variables: - e
. . . . printf("%d", a) ;
. Defined outside functions, seen by all files - |
= Use “extern” keyword to use a ’

global variable defined in another file
« Const Variables:

global variable from one file can be used in other using extern keyword.

- For variables that won’t change {ineluesstdio
. Stored in read-only data section { static int count = 0;
« Static Variables: , et counts
- Forlocals, keeps value between invocations | ==
- USE SPARINGLY ?tiioi v an0)
- Note: static has a different meaning when }
referring to functions (not visible outside of
object file) Output

12

Casting

« Can convert a variable to a different type
Rules for Casting Between Integer Types

Integer Casting:

- Signed <-> Unsigned: Keep Bits - Re-Interpret

- Small -> Large: Sign-Extend MSB, preserve value

Cautions:

. Cast Explicitly: int x = (int) y instead of int x =y

. Casting Down: Truncates data

. Casting across pointer types: Dereferencing a pointer may cause
undefined memory access

ole Viellop

Pointers

m Stores address of a value in memory
m eg. int*, char*, int**, elc
m Access the value by dereferencing (e.g. *a).
Can be used to read or write a value to given

address
m Dereferencing NULL causes undefined

behavior (usually a segfault)

Pointers

m Pointer to type A references a block
of sizeof (A) bytes

m Get the address of a value in
memory with the ‘&’ operator

m Pointers can be aliased, or pointed
to same address

1000 1001

_)
m:gl:har—T ++

2000 2001 2002 2003

U—
myshorth ++

3000 3001 3002 3003 3004 3005 3006 3007

T
myint T++

arneocie Viellop

Pointer Arithmetic ./pointer arith

« Can add/subtract from an address to get a new address
= Only perform when absolutely necessary (i.e., malloclab)
= Result depends on the pointer type

« A+1,where Ais apointer= 0x100,1iisan int
int* A A+1 = 0x100 + sizeof (int) * 1 = 0x100 + 4 * 1
char* A: A+1 = 0x100 + sizeof(char) * 1 = 0x100 + 1 * 1
int** A: A+1 = 0x100 + sizeof(int*) * 1 = 0x100 + 8 * 1

« Rule of thumb: explicitly cast pointer to avoid confusion
Prefer ((char*) (A) + i) to(a + 1), evenif A hastype char*

Pointer Arithmetic ./pointer arith

m The ‘pointer_arith’ program demonstrates how values of
different sizes can be written to and read back from the
memory.

m [he examples are to show you how the ~type~ of the
pointer affects arithmetic done on the pointer.

m When adding x to a pointer A (i.e. A + x), the result is really
(A + x * sizeof(TYPE_OF _PTR_A)).

m Run the ‘pointer_arith’ program
$./pointer arith

Call by Value vs Call by Reference

Call-by-value: Changes made to arguments passed to a function

aren’t reflected in the calling function
Call-by-reference: Changes made to arguments passed to a

function are reflected in the calling function
C is a call-by-value language

To cause changes to values outside the function, use pointers
Do not assign the pointer to a different value (that won'’t be reflected!)
Instead, dereference the pointer and assign a value to that address

void swap (int* a, int* Db) { int x = 42;
int temp = *a; int y = 54;
*a = *b; swap (&x, &y);
*b = temp; printf (“%d\n”, x); // 54

printf (“&sd\n”, vy); // 42

Arrays/Strings

= Arrays: fixed-size collection of elements of the same type

Can allocate on the stack or on the heap

int A[10]; // A is array of 10 int’s on the stack
int* A = calloc (10, sizeof(int)); // A is array of 10
int’s on the heap

« Strings: Null-character (\O’) terminated character arrays

Null-character tells us where the string ends
All standard C library functions on strings assume null-termination.

.“.

arneocie Viellop

Structs ./structs

Collection of values placed under one name in a single

block of memory
- Can put structs, arrays in other structs

Given a struct instance, access the fields using the ‘.’

operator
Given a struct pointer, access the fields using the —>

operator

struct inner s { struct outer s /{ outer s out inst;
int 1i; char ar[10]; out inst.ar[0] = ‘a’;
char c; struct 1nner s 1in; out inst.in.1i = 42;

}i outer s* out ptr = &out inst;
out ptr->in.c = ‘b’;

C Program Memory Layout

high address

low address

heap

uninitialized data
(bss)

initialized data

text

]_ command-line arguments

and environment variables

mitinlized to
zero by exec

read from
program file
by exec

.“.

Stack vs Heap vs Data

Local variables and function arguments are placed on the

Stack

- deallocated after the variable leaves scope

= do not return a pointer to a stack-allocated variable!

- do not reference the address of a variable outside its scope!

Memory blocks allocated by calls to malloc/calloc are
placed on the heap

Example:
- int* a = malloc(sizeof(int));
- /lais a pointer stored on the stack to a memory block within the heap

Malloc, Free, Calloc

= Handle dynamic memory allocation on HEAP

s vold* malloc (size t size):
- allocate block of memory of size bytes
= does not initialize memory
» vold* calloc (size t num, size t size):
. allocate block of memory for array of num elements, each size bytes long
- initializes memory to zero
= vold free(voild* ptr):
. frees memory block, previously allocated by malloc, calloc, realloc, pointed
by ptr
= use exactly once for each pointer you allocate
= size argument:
= number of bytes you want, can use the sizeof operator

- sizeof: takes a type and gives you its size
= €.0.,slzeof(int), sizeof (int¥*)

mem mgmt.c
Memory Management Rules ./mem valgrind.sh

= malloc whatyou free, free whatyoumalloc
. client should free memory allocated by client code
- library should free memory allocated by library code

= Number mallocs = Number frees

- Number mallocs > Number Frees: definitely a memory leak
- Number mallocs < Number Frees: definitely a double free

« Free a malloc’ed block exactly once
- Should not dereference a freed memory block

= Only malloc when necessary
- Persistent, variable sized data structures
- Concurrent accesses (we’ll get there later in the semester)

Valgrind

Find memory errors, detect memory leaks

Common errors:
- lllegal read/write errors
= Use of uninitialized values
- lllegal frees
= Overlapping source/destination addresses

Typical solutions
= Did you allocate enough memory?
= Did you accidentally free stack variables or free
something twice?
= Did you initialize all your variables?
Did use something that you just freed?

--Ieak check=full
= Memcheck gives details for each

definitely/possibly lost memory block (where it
was allocated

Fle Eat Yiew Jerminal Taps Help

[pwells2@newcell ~/junk]$ valgrind ./memleak

»=16738== Memcheck, a memory error detector

==16738== Copyright (C) 2002-20106, and GNU GPL'd, by Julian Seward et al.
==16738== Using Valgrind-3.6.1 and L1DVEX; rerun with -h for copyright info
ww16738«« Command: ./memleak

wul6738m=

w=16738== Invalid write of size 4

wn16738mm at 0x400589: main (mem leak.c:32)

==]16738== Address Ox4c26068 1s O bytes after a block of size 40 alloc'd
wul6738u= at Ox4A0646F: malloc (vg _replace malloc.c:236)

wul6738uw by 0x400505: main (mem leak.c:17)

wwl6738w=

w=16738== Invalid read of size 4

wnl6738mm at Ox400598: main (mem leak.c:33)

==]16738== Address Ox4c26068 1s © bytes after a block of size 40 alloc'd
wnl6738u= at Ox4A0646F: malloc (vg replace malloc.c:236)

wul6738uw by 0x400505: main (mem leak.c:17)

we16738e=
ww16738w=

ww16738==|HEAP SUMMARY :

wnl6738m= in use at exit: 410 bytes in 8 blocks

wnl6738u= total heap usage: 11 allocs, 3 frees, 590 bytes allocated
wul6738uw
wul6738==| LEAK SUMMARY:

we16738w= definitely lost: 410 bytes in 8 blocks

wnl16738mm indirectly lost: O bytes in © blocks
wul6738m= possibly lost: 0 bytes in © blocks
wul6738u= still reachable: 0 bytes in © blocks
wul6738ue suppressed: 0 bytes in 0 blocks

w167 38w "RETUM WITIT - ICAR - CNECRSTULL LU SO0 UUTAILS U loaRey menory™
ww16738m=

==16738== For counts of detected and suppressed errors, rerun with: -v
w=]16738== ERROR SUMMARY: 36 errors from 2 contexts (suppressed: 4 from 4)
[pwells2@newcell ~/junk]s [J

Debugging

GDB

= No longer stepping through assembly!
Some GDB commands are different:

« Use TUI mode (layout src)

si/ ni — step / next

break file.c:line_num

disas — list

print <any_var_name> (in current frame)
frame and backtrace still useful!

L221 PC: 0x55555555552f

t 0x151a: file puzzlebox.c, line 220
ut.txt

ogram: /home/kauffman/Dropbox/teaching/2021-52018/assignments/a2-bina
ry/solution-a2-2021/puzzlebox input.txt

Nice display for viewing source/executing rratreaunsrms

(gdb) next
(gdb) break puzzlebox.c:225

Com mands ?;;l;pimt 2 at 0x555555555583: file puzzlebox.c, line 225.
Buggy, so only use TUI mode to step
through lines (no continue / finish)

Additional Topics

e Headers files and header guards
e Macros
e Appendix (C libraries)

Header Files

« Usage: #include <header.h>

= Never include .c files (bad practice)

// list.h
struct list node {
int data;
struct list node* next;
i
typedef struct list node* node; }

node new list();
void add node (int e, node 1);

}

// list.c
#include “list.h”

node new list() {

// implementation

void add node (int e, node 1)
// implementation

{

Includes C declarations and macro definitions to be shared
across multiple files
Only include function prototypes/macros; implementation code goes in .c file!

#include <1lib> for standard libraries (eg #include <string.h>)
#include “file” for your source files (eg #include “header.h”)

// stacks.h
#include “list.h”
struct stack head {
node top;
node bottom;

i
typedef struct stack head* stack

stack new stack();
void push(int e, stack S);

Header Guards

« Double-inclusion problem: include same header file twice
//grandfather.h //father.h //child.h

#include “grandfather.h” #include “father.h”
#include “grandfather.h”

Error: child.h includes grandfather.h twice

« Solution: header guard ensures single inclusion

//grandfather.h //father.h //child.h
#ifndef GRANDFATHER H #ifndef FATHER H #include “father.h”
#define GRANDFATHER H #define FATHER H #include “grandfather.h”

#include “grandfather.h”

#endif #fendif

Okay: child.h only includes grandfather.h once

arneocie Viellop

Macros ./Macros

= A way to replace a name with its macro definition
No function call overhead, type neutral
Think “find and replace” like in a text editor
« Uses:
defining constants (INT_MAX, ARRAY_SIZE)
defining simple operations (MAX(a, b))
122-style contracts (REQUIRES, ENSURES)
« Warnings:
Use parentheses around arguments/expressions, to avoid problems after

substitution
Do not pass expressions with side effects as arguments to macros

#define INT_MAX Ox7FFFFFFFF
#define REQUIRES (COND) assert (COND)
#define WORD SIZE 4

C Libraries

<string.h>: Common String/Array Methods

= Used heavily in shell/proxy labs

= Reminders:

ensure that all strings are "\ 0’ terminated!
ensure that dest is large enough to store src!
ensure that src actually contains n bytes!
ensure that src/dest don’t overlap!

..“.

[A

THS S GREAT, BUT S0V FORGOT TO ADD

NULL TERMINATOR NOW I'M QUST QE.\DNGJ

4

<string.h>: Dealing with memory

m void *memset (void *ptr, int val, size t n);
> Starting at ptr, write val to each of n bytes of memory
> Commonly used to initialize a value to all 0 bytes
> Be careful if using on non-char arrays

m volid *memcpy (void *dest, voild *src, size t n);
> Copy n bytes of src into dest, returns dest
> dest and src should not overlap! see memmove ()

Whenever using these functions, a sizeof expression is in order, since they
only deal with lengths expressed in bytes. For example:

int array[32];

memset (array, 0, sizeof (array));

memset (array, 0, 32 * sizeof (array[0]));
memset (array, 0, 32 * sizeof (int));

.“.

<string.h>: Copying and concatenating strings

Many of the string functions in <string.h> have “n” versions which read at
most n bytes from src. They can help you avoid buffer overflows, but their

behavior may not be intuitive.

char *strcpy (char *dest, char *src);

char *strncpy (char *dest, char *src, size t n);

> Copy the string src into dest, stopping once a *\0’ character is
encountered in src. Returns dest.

> Warning: strncpy will write at most n bytes to dest, including the
‘“\0’. If srcis more than n-1 bytes long, n bytes will be written, but

no *\0’ will be appended!

<string.h>: Concatenating strings

On the other hand, strncat has somewhat nicer semantics than strncpy,
since it always appends a terminating *\0’. This is because it assumes that
dest is a null-terminated string.

char *strcat (char *dest, char *src);

char *strncat (char *dest, char *src, size t n);

> Appends the string src to end of the string dest, stopping once a
*\ 0’ character is encountered in src. Returns dest.

> Make sure dest is large enough to contain both dest and src.

> strncat will read at most n bytes from src, and will append those
bytes to dest, followed by a terminating *\ 0.

<string.h>: Comparing strings

m int strcmp(char *strl, char *str2);

int strncmp (char *strl, char *str2, size t n);

> Compare strl and str2 using a lexicographical ordering. Strings
are compared based on the ASCII value of each character, and then
based on their lengths.

> strcmp(strl, str2) < 0means strlislessthan str2, etc.

> strncmp Will only consider the first n bytes of each string, which can
be useful even if you don’t care about buffer overflows.

oje Vie

<string.h>: Miscellaneous

char *strstr (char *haystack, char *needle);
> Returns a pointer to first occurrence of needle in haystack, or
NULL if no occurrences were found.

char *strtok (char *str, char *delimiters):;
> Destructively tokenize str using any of the delimiter characters
provided in delimiters.

> Each call returns the next token. After the first call, continue calling
with str = NULL. Returns NULL if there are no more tokens.

> Not reentrant.

size t strlen (const char *str);
> Returns the length of the string str.
> Does not include the terminating ‘\ 0’ character.

What's wrong?

char *copy string(char *in str) {
Size_t_len = strlen(in:str);
char *out str = malloc(len * sizeof (char));
strcpy (out str, in str);
return out:str; B

What's wrong?

char *copy string(char *in str) {
Size_t_len = strlen(in:str);
char *out str = malloc((len + 1) * sizeof (char));
strcpy (out str, in str);
return out:str; B

m malloc should be paired with free if possible
m One-byte buffer overflow

https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html

<stdlib.h>: General Purpose Functions

m int atoi(char *str);
> Parse string into integral value
> Returns 0 on failure...

B int abs(int n);
> Returns absolute value of n
> See also: long labs (long n);

B voild exit(int status);

> Terminate calling process
> Return status to parent process

m void abort (void) ;
> Aborts process abnormally

<stdlib.h>: What's a size t, anyway?

m Unsigned type used by library functions to represent
memory sizes
ssize tisits signed counterpart (often used for -1)
Machine word size: 64 bits on Shark machines
int may not be able to represent size of large arrays

warning: comparison between signed and unsigned integer
expressions [-Wsign-compare]
for (int 1 = 0; 1 < strlen(str); i++) {

AN

ole Viellop

More standard library friends

<stdbool.h>
B bool

<stdint.h>
B SIZE MAX, INT MIN, efc

<assert.h>

B void assert(scalar expression);
> Aborts program if expression evaluates as false
> 122 wasn’t completely useless!

<stdio.h>: C standard library I/O

s Used heavily in
cache/shell/proxy labs

s Functions:
> argument parsing
> file handling
> input/output
m printf, afan favorite,
comes from this library!

Text terminal

[Keyboard

[Display

#0 stdin

#1 stdout

<stdio.h>: File I/O

B FILE *fopen (char *filename, char *mode);
> Open the file with specified filename
> Open with specified mode (read, write, append)
> Returns file object, or NULL on error

B int fclose (FILE *stream);
> Close the file associated with stream
> Returns EOF on error

B char *fgets (char *str, int num, FILE *stream);
> Read at most num-1 characters from stream into str
> Stops at newline or EOF; appends terminating *\ 0’
> Returns str, or NULL on error

<stdio.h>: scanf and friends

int scanf (char *format, ...);
int fscanf (FILE *stream, char *format, ...);
int sscanf (char *str, char *format, ...);

Read data from stdin, another file, or a string

Additional arguments are memory locations to read data into
format describes types of values to read

Return number of items matched, or EOF on failure

.“.

<stdio.h>: printf and friends

int printf (char *format, ...);
int fprintf (FILE *stream, char *format, ...);
int sprintf (char *str, char *format, ...);

int snprintf (char *str, size t n, char *format,

Write data to stdout, a file, or a string buffer
format describes types of argument values

Returns number of characters that would be written by the string
(unless truncated in the case of snprintf)

.

.“.

<stdio.h>: Format strings crash course

Placeholders Size specifiers

m %d: signed integer Used to change the size of an
O gqn : : existing placeholder.

m %u: un3|gneq integer Y B shoot

m %x: hexadecimal m 1. long

m 3£ floating-point m 1llilong long

m $s: string (char *) " msize t

m %c' character For (.e>.<ample, conS|der. these
o . int dd modified placeholders:

B 3Sp. pointer aaadress m 31dfor long

m $%1f for double
m %zuforsize t

What's wrong?

int parse int (char *str) { void echo (void) {
int n;

char buf[lo];
sscanf (str, "%d", n); scanf ("%s", buf);
return n;

printf (buf) ;
}

.“.

What's wrong?

int parse int (char *str) { void echo (void) {
int n; char buf[1l6];
sscanf (str, "%d", &n); scanf ("%15s", buf);
return n; printf ("ss", buf);

} }

e Don't forget to pass pointers to e Avoid using scanf to read
scanf, not uninitialized values! strings: buffer overflows.

e At least checking return value of e Need room for null terminator

scanf tells you if parsing failed

_ _ e Never pass a non-constant
— which you can’t do with atoi

string as the format string for
printf!

Getopt

Need to include unistd.h to use :

Used to parse command-line
arguments.

Typically called in a loop to
retrieve arguments

Switch statement used to handle
options

= colon indicates required argument
. optarg is set to value of option

argument
Returns -1 when no more
arguments present
See recitation 6 slides for more
examples

1

{

nt main (int argc,

char **argv)

int opt, x;
/* looping over arguments */
while ((opt=getopt (argc,argv,"x:"))>0) {
switch (opt) {
case
x =

'x':

atoil (optarqg) ;
break;

default:
printf (“wrong argument\n") ;
break;

Note about Library Functions

« These functions can return error codes
. malloc could fail
« 1nt x;
if ((x = malloc(sizeof(int))) == NULL)
printf (“Malloc failed!!!'\n”);
- a file couldn’t be opened
- a string may be incorrectly parsed

= Remember to check for the error cases and handle the
errors accordingly

= may have to terminate the program (eg malloc fails)
= Mmay be able to recover (user entered bad input)

ojle Ve

Style

m Documentation
m file header, function header, comments

m Variable Names & Magic Numbers
B new cache size isgood, not new cacheSize orsize
m Use #define CACHESIZE 128

m Modularity

m helper functions

m Error Checking

m malloc, library functions...

m Memory & File Handling

m free memory, close files
m Check style guide for detailed information

http://www.cs.cmu.edu/~213/codeStyle.html

