Carnegie Mellon

Virtual Memory: Concepts

15-213: Introduction to Computer Systems
“17t" Lecture, July 8, 2020

Instructor:
Sol Boucher

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Today

Processes: Concepts

Address spaces

VM as a tool for memory management
VM as a tool for memory protection

O O O 0O 04

VM as a tool for caching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Processes

UDefinition: A process is an instance of a running

program.
® One of the most profound ideas in computer science

" Not the same as “program” or “processor”

U Process provides each program with two key
abstractions: Memory
® | ogical control flow Stack
" Each program seems to have exclusive use of the CPU Heap
" Provided by kernel feature called context switching gj;i
" Private address space
® Each program seems to have exclusive use of main memory. CPU
" Provided by CPU feature called virtual memory Registers

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data ooo Data
Code Code Code
CPU CPU CPU

Registers Registers Registers

O Computer runs many processes simultaneously

[0 Applications for one or more users
= Web browsers, email clients, editors, ...

= Background tasks
= Monitoring network & 1/0 devices

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Multiprocessing Example

N[xterm

Proceszes: 123 total, 5 running, 9 stuck, 109 zleeping, B11 threads 1147 :07
Load Awg: 1,03, 1,13, 1,14 CPU uzage: 3,27 uszer, 5,158 =sys, 91.56% idle

SharedLibz: 576K resident, OB data, OB linkedit,

HemBegions: 27998 total, 1127H resident, 35M private, 434 shared,

PhysMem: 1039M wired, 1974M active, 10BZ2M inactiwve, 407VEM uszed, 18M free,

YH: 280G vsize, 1091M framework wsize, 230759213(1) pageins, B843367(0) pageouts,

Hetworks: packets: 41046228110 in, BEOBI0SE/7/L out, I
Dizkszt 178742391/34906 read, 12847373/0040 written, t

FII COMMAND ZCFU TIHE #TH #W0 #PORT #MREG EPEWT RSHED RSIZE WPEMT WSIZE
99217- Microsoft OF 0,0 02:28,34 4 1 202 418 Z1M 24H 21 BEM FEAH

33051 wsbmuxd 0,0 0030410 3 1 47 BE 436k 21EK 480k BOM 2422
FI006 iTunesHelper 0,0 OO301,23 2 1 55 3 faak 3124k 1124k 43M 24294
24286 bash 0,0 000,11 1 0 20 24 224k 732k 484K 1M 2378H
24280 xterm 0,0 00:00,83 1 0 22 73 BSEK 872K B9Z2k 9728k 2382H
595939- Microsoft Ex 0,3 21:;58,97 10 3 360 354 1BM =y 4EM 114K 1057M
54751 =leep 0,0 00:00,00 1 0 17 20 32k 212k 3R0K B3k ZE7O0M
54739 launchdadd 0,0 Q000,00 2 1 33 5 483k 220K 173EK 48HM 24091
4737 top B.o 000253 171 0 B 23 1416k 216K 2124k 17H 2378H
24713 automountd 0,0 0030002 7 1 53 B4 ob0k 216k 2184K haM 2413
54701 ocspd 0,0 000005 4 1 B1 54 1268k 2644k 3132K 5HOH 2426M
54661 Grab 0,6 00:02,75 B 3 222+ 389+ 1G5M+ Z2BM+ 40M+ FhM+ 2BDEH+
54653 cookied 0.0 00:00,15 2 1 40 Bl 331EK 224K 4088k 42M 2411H
FZHMA mdunrker fon nnsnt R7 4 1 5 g1 FROAK 419K 1FM A°H 24 2R

U Running program “top” on Mac

= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Preview: Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

URunning
" Process is executing (or waiting to, as we'll see next week)

U Stopped

" Process execution is suspended until further notice (covered later)

UTerminated
® Process is stopped permanently

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Terminating Processes

UProgrammer can explicitly terminate process by:
® Returning from the main routine
® Calling the exit function

Uvoid exit (int status)
® Terminates with an exit status of status
® Convention: normal return status is O, nonzero on error

" Another way to explicitly set the exit status is to return an integer value from
the main routine

Uexit is called once but never returns.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Creating Processes

U Parent process creates a new running child process by
calling fork

Hint fork (void)
® Returns O to the child process, child’s PID to parent process
® Child is almost identical to parent...

Different how?

U fork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Hmmm, How Does This Work?!

Process 1 Process 2 Process n

00007FFFFFFFFFFF
Stack Stack

1 1 1

OO0O007FFFFFFFFFFF = <k

400000
000000

e o o
Shared Shared Shared
Libraries Libraries Libraries
1 1 1
Heap Heap Heap
Data Data Data
ext

Solution: Virtual Memory (today and next lecture)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Creating Processes

U Parent process creates a new running child process by
calling fork

Hint fork (void)
® Returns O to the child process, child’s PID to parent process
® Child is almost identical to parent:

" Child get an identical (but separate) copy of the parent’s virtual
address space.

® Child gets identical copies of the parent’s open file descriptors
® Child has a different PID than the parent

U fork is interesting (and often confusing) because
it is called once but returns twice

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Today

Processes: Concepts
Address spaces

VM as a tool for memory management
VM as a tool for memory protection
VM as a tool for caching

O O O 0O O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

A System Using Physical Addressing

Main memory

Physical address

(PA)

CPU 7 >

PN HOdMRO

Data word

O Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address §
(VA) (PA))
CPU > MMU 1 - &
4100 5.
A

6:
7:
8:
M-1

Data word

O Used in all modern servers, laptops, and smart phones
U One of the great ideas in computer science

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Address Spaces

U Linear address space: Ordered set of contiguous non-negative integer
addresses:
{0,1,2,3...}

U Virtual address space: Set of N = 2" virtual addresses
{0,1,2,3,...,,N-1}

O Physical address space: Set of M = 2™ physical addresses
{0,1,2,3,..., M-1}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Why Virtual Memory (VM)?

U Simplifies memory management
® Each process gets its own private address space

HUlsolates address spaces
® One process can't interfere with another’s memory
® User program cannot access privileged kernel information and code

U Allows addressing locations outside DRAM

" Programs can access “memory” to communicate with other devices
® The kernel can handle such accesses in software

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Paging: Pages and Page Tables

UA page is the aligned unit at which mapping is customized
" Typically 4 KB on modern systems

U A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages. Main memory
" Per-process kernel data structure in DRAM (DRAM)
valid “Pointer” it PPO
PTEO]| 0 null / VP 2
_—— VP 7
:] PP 3
1 —
0 . ~
0 null S~
0 null A T~ Other devices
0 [S \/ T~ S -
PTE7]| 1 ' > | Sk
Memory resident \\
page table S~
(DRAM) S

Distributed

shared memory
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Remember: Set Associative Cache Block
offset
E = 2: Two lines per set
Assume: cache block size 8 bytes Address : l‘L\
2 lines per set t bits 0..01 | 100
A
- ~
(

v| [tag | [ol 1] 2[3]4]5]6]7]| |Lv] [tag | [of1]2[3]4]5]6]7

v] [tag | [o] a[2[3[4l 5[6] 7]| |[v] [tag] [o] o] 2 [4] 5[6]7]| — Indexto

find set
< v| [tag | [ol 1] 2[3]4]5]6]7]]| |Lv] [tag | [of1]2[3]4]5]6]7
|| || | || || || || || || | |

v| [tag | (o] 1l 2]3]4]l5]6l7]| [|v] [tag | [0l af2]3]4]5[6]7

\.

S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Preview: Address Translation

Page table
base register (PTBR)
(CR3in x86)

Virtual address

Physical page table
address for the current

2

process

Valid bit = 0:
Page not in memory "
(page fault)

n-1 p p-1 0
Virtual page number (VPN) Virtual page offset (VPO)
Page table
_Valid Physical page number (PPN)
Valid bit =1
m-1 p p-1 J 0

Y

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

18

Carnegie Mellon

Admission of Guilt

Olje: “Memory can be viewed as an array of bytes”...
® Actually discontinuous, with unmapped regions

HLie: “Memory addresses refer to locations in RAM”...

® Programmer sees only virtual addresses, which CPU’s MMU translates to
physical addresses before sending them to the memory controller

Olie: “Memory addresses are 64 bits”...

® Current x86-64 CPU MMUs only support 48-bit virtual addresses, which is
enough to address 256 TB of RAM

® Future CPUs may widen this without a change to the ISA

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Today

Processes: Concepts
Address spaces

VM as a tool for memory management
VM as a tool for memory protection
VM as a tool for caching

O O O 0O O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

VM as a Tool for Memory Management

UKey idea: each process has its own virtual address space
" Mapping function scatters addresses through physical memory
" Process only knows about virtual addresses, so mappings can change

Virtual 0 Add;‘es.s 0 Main
Address VP 1 translation memory
Space for VP 2 | PP2 (DRAM)
Process 1:
N-1
(e.g., read-only
)|_PP6 library code)
. 0
Virtual | pps
Address VP 1
Space for VP 2
Process 2: ooo

N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

VM as a Tool for Memory Management

U Simplifying memory allocation

® Each virtual page can be mapped to any physical page

" A virtual page can be stored in different physical pages at different times
USharing code and data among processes

" Map virtual pages to the same physical page (here: PP 6)

Virtual 0 Add;‘es.s 0 Main
Address VP 1 transiation memory
Space for VP 2 | PP2 (DRAM)
Process 1:
N-1
(e.g., read-only
|_PP6 library code)
. 0
Virtual | pps
Address VP 1
Space for VP 2
Process 2:

N-1 M-1

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

Virtual Address Space of a Linux Process

~
Process-specific data)
Different for 2 structs (ptables,
each process task and mm structs, Kernel
L kernel stack))
virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data)
User stack \
%rsp > ‘
Memory mapped
region for shared
libraries
Process
brk — t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
000400000 —___Program text (.text)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perse\.wn., oo) 23

Page Hit

U Page hit: reference to page that is in physical memory

Virtual address

Physical memory

Physical page (DRAM)
number or VP 1
Valid disk address / i
PTEO| o null /
— VP 7
1 —
0 null _—
1
0 null P
0 null /
PTE 7| 1 Cd
Memory resident
page table
(DRAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

PP O

PP 3

24

Page Fault

Carnegie Mellon

U Page fault: reference to page that is not in physical memory

Virtual address

PTEO

PTE 7

Physical memory

Physical page (DRAM)
number or VP 1
Valid disk address / i
0 null /
— VP 7
1 —
0 null _—
1
0 null P
0 null /
1 o«
Memory resident
page table
(DRAM)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PPO

PP 3

25

Today

Processes: Concepts
Address spaces

VM as a tool for memory management
VM as a tool for memory protection

O O O 0O O

VM as a tool for caching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

VM as a Tool for Memory Protection

O Extend PTEs with permission bits

0O MMU checks these bits on each access

Process i:
VP 0O:

VP 1:
VP 2:

Process j:

VP O:
VP 1:
VP 2:

Physical

Carnegie Mellon

Address Space

PP 2

PP 4

PP 6

PP 8

SUP READ WRITE EXEC Address
No Yes No Yes PP 6
No Yes Yes Yes PP4
Yes Yes Yes No PP 2
o
[J
SUP READ WRITE EXEC Address
No Yes No Yes PP 9
Yes Yes Yes Yes PP 6
No Yes Yes Yes PP 11

PP 9

Y v\u. |4 L

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PP 11

27

Carnegie Mellon

Virtual Address Space of a Linux Process

~
Process-specific data)
Different for 2 structs (ptables,
each process task and mm structs, Kernel
L kernel stack))
virtual
. i memor
Identical for Physical memory y
each process
P Kernel code and data)
User stack \
%rsp > ‘
Memory mapped
region for shared
libraries
Process
brk — t > virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
000400000 —___Program text (.text)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perse\.wn., oo) 28

Carnegie Mellon

Linux Organizes VM as Collection of “Areas”

Process virtual memory
vm_area_struct

task struct >
— mm s truct Vm_end
mm » ped vm_start
vm_prot
mmap vm_flags
Shared libraries
T vm_end
» T
“ peds e
® Page global directory address vm_IEIags Data
" Points to L1 page table -
U vm_prot:
® Read/write permissions for Text
this area d o o
vim_start >
Uvm_flags ——
® Pages shared with other vm_ﬂags
processes or private to this vm_next 0
process Each process has own task_struct, etc

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Linux Page Fault Handling

vm_area_struct Process virtual memory

vm_end
vm_start
vim_prot
vm_flags
shared libraries
rg Segmentation fault:
——— o o 4o

> accessing a non-existing page
vm_end
vm_start > e
vim_prot dat d
vm_flags i read Normal page fault ...?!

text 9 Protection exception:

" vm end . write e.g., violating permission by
vm_start ——— writing to a read-only page (Linux
vm_prot reports as Segmentation fault)
vm_flags
vm_next

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Carnegie Mellon

Today

U Processes: Concepts
U Address spaces

LVM as a tool for memory management
L'VM as a tool for memory protection
UVM as a tool for caching

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31

Carnegie Mellon

Caching... as in a cache like this, right? sl

offset
UNo! Doesn’t work like a CPU cache.

Address : l‘L\

t bits 0..01 | 100

UCache: A smaller, fast%rligte?rl;gge.t.. staging area.

se

- ~
(
\'; taﬂ 0| 1 415167
\'; taﬂ 0| 1 4151671 — Index to
find set
< v taﬂ 0] 1 4151617
|| || || || |
v| [tag | [o] 1 4]5]6]7
_
S sets

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

A

Carnegie Mellon

Remember: Memory/ \ Hierarchy

Regs CPU registers hold words retrieved
Smaller, from the L1 cache.
faster, Ll/ L1 cache
and (SRAM) L1 cache holds cache lines retrieved
?ojlioert | . L2 cache from the L2 cache.
Per byte (SRAM) ,
storage L2 cache holds cache lines
devices retrieved from L3 cache
L3: L3 cache
(SRAM)
L3 cache holds cache lines
retrieved from main memory.
Larger,
slower, L4: Main memory
and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.
storage | 5. Local secondary storage
devices (local disks)
Local disks hold files
retrieved from disks
on remote servers
L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl.Q’Hallaron, Computer Systems: A Programmer’s Perspective Third Fdition 33

A

Carnegie Mellon

Remember: Memoy Hierarchy
Regs
Smaller i .

: 2]
faster, L1 / L1 cache \ Where is virtual memory?!
and (SRAM) It is not a cache!
costlier L2: L2 cache It is an abstraction that
(per byte) (SRAM) allows customizing memory
storage addresses’ meanings.
devices _ _

L3: L3 cache Here, it allows main memory
(SRAM) to serve as a cache for disk.
Larger,
slower, L4: Main memory
and (DRAM)
cheaper
(per byte)
storage | 5. Local secondary storage
devices (local disks)
L6: Remote secondary storage

(e.g., Web servers)

Bryant anfl.Q’Hallaron, Computer Systems: A Programmer’s Perspective Third Fdition 34

Remember: Memory/ \ Hierarchy

?arzi:rer’ L1 cache Inclu_sive cgche: each
and ’ (SRAM) level is a strict superset of
costlier the one above |

(per byte) L2 cache (depends on architecture)
storage (SRAM)

defices

L3 cache
(SRAM)

Lafeer, Non-inclusive cache:
slover, L4: Main memory each level may contain
anj (DRAM) elements\not present in
chéaper the others

stqrage . Local secondary storage
. L5:
defices (local disks)

Remote secondary storage
(e.g., Web servers)

Bryant Rnd Q'Hallaron _Comp

Carnegie Mellon

35

DRAM Cache Organization

UDRAM cache organization driven by the enormous miss penalty
®" DRAM is about 10x slower than SRAM
® Disk is about 10,000x slower than DRAM

U Consequences
" Large page (block) size: typically 4 KB, sometimes 4 MB
" Fully associative
* Any VP can be placed in any PP
* Requires a “large” mapping function - different from cache memories
" Highly sophisticated, expensive replacement algorithms
* Too complicated and open-ended to be implemented in hardware
" Write-back rather than write-through

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Paging: Once More w/ Feeling—err, swap

O A swap area is an on-disk “overflow scratch space”

®" When running out of DRAM, the operating system can move pages here
instead of crashing.

Main memory

Physical page (DRAM)
number or VPl
Valid disk address PPO
PTEO Il AL
0 nut__— VP 7
1 — VP 4 PP 3
1 —
0 e _—]
1 SO
0 null P ¢ Swap area
0 o~ ~ S~ (disk)
PTE7| 1 o "~ TNe VP 1
Memory resident ~~_ RN VP 2
age table T~ T
Pag RS VP 3
(DRAM) N
~.o VP 4
VP 6
: , . g VP 7
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37

Page Hit

Carnegie Mellon

O Page hit: in some ways like a DRAM “cache hit”

Virtual address

Physical memory

Physical page (DRAM)
number or o
Valid disk address PP O
—— VP 7
- — VP4 PP 3
1 —
0 N
1 | g E\\
0 null P ¢ Swap area
0 o~ | ~<_ (disk)
PTE7[1 o« - . VP 1
Memory resident\\ VP 2
page table .
(DRAM) VP3
. VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

38

Carnegie Mellon

Page Fault

O Page fault: in some ways like a DRAM “cache miss”

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address VP1 PPO
./4 VP 7
. — VP4 PP 3
1 —
> 0 N
1 -~ N
0 null P ¢ Swap area
0 o~ | ~~_ (disk)
PR/ C — Tee VP 1
Memory resident \\ \\ VP 2
page table A “a
(DRAM) sl VP 3
RN - VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Handling Page Fault

O Page miss causes page fault (an exception)

Virtual address

PTEO

PTE 7

Carnegie Mellon

Physical memory

Physical page (DRAM)
number or 71 PP 0
Val(;d disk adclllresS / VP 2
nu
_— VP 7
1 — VP4 PP 3
1 —
0 e _—
1 SO
0 null P ¢ Swap area
0 N \/ S o (diSk)
1 ./ S — Se . VP 1
Memory resident ~~_ VP 2
page table ~a
(DRAM) VP3
. VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

40

Carnegie Mellon

Handling Page Fault

O Page miss causes page fault (an exception)
O Operating system selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
Valid disk address VP1 PPO
./4 VP 7
. — VP4 PP 3
1 —
0 N
1 -~ N
0 null P ¢ Swap area
0 o~ | ~~_ (disk)
PR/ C — Tee VP 1
Memory resident \\ \\ VP 2
page table A “a
(DRAM) sl VP 3
RN - VP 4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Handling Page Fault

O Page miss causes page fault (an exception)
O Operating system selects a victim to be evicted (here VP 4)

Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1 PP O
./4 VP 7
. — VP3 PP 3
1 —
1 o/‘
0 .
0 null Swap area
0 / L (disk)
PTETU ./ = o VP 1
Memory resident ~~_ \\ VP 2
page table Sso O~
(DRAM) RV VP3
RS - VP4
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Handling Page Fault

O Page miss causes page fault (an exception)
O Operating system selects a victim to be evicted (here VP 4)

O Offending instruction is restarted: page hit!
Physical memory

Physical page
Virtual address number or (DRAM)
valid disk address VP1 PPO
PTEO]| 0 null L
o VP 7
1 — VP3 PP 3
1 —
X 1 ./"
0 =
0 null Swap area
0 / . (disk)
PTE7| 1 / DRV IRRENY VP 1
Memory resident\~\ \\ VP2
page table DN
(DRAM) \\ .~ VP 3
°) ° ° b s ~ VP 4
Key point: Waiting until the miss to copy the page to » Y
DRAM is known as demand paging s

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

Carnegie Mellon

Allocating Pages

O Allocating a new page (VP 5) of virtual memory.
Physical memory

Physical page (DRAM)
number or prey
Valid disk address PP O
PTEO| 0 null / VP 2
/4 VP 7
” — VP3 PP 3
1 —
1 — |
0 [N
0 & N Swap area
0 o k. (disk)
PTE7] 1 ALY NN VP 1
Memory resident ~ _ \\ N VP2
page table RN N
(DRAM) REVRRNERRN VP 3
RN VP 4
N VP 5
VP 6
VP 7

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44

Carnegie Mellon

Locality to the Rescue Again!

UVirtual memory seems terribly inefficient, but it works
because of locality.

U At any point in time, programs tend to access a set of active
virtual pages called the working set

® Programs with better temporal locality will have smaller working sets

HIf (working set size < main memory size)
® Good performance for one process after compulsory misses

H1f (SUM(working set sizes) > main memory size)

" Thrashing: Performance meltdown where pages are swapped (copied) in
and out continuously

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45

Carnegie Mellon

Linking and Loading Revisited

Ulinking
® Each program has similar virtual
address space

® Code, data, and heap always start
at the same addresses.

Uloading

" Allocate virtual pages for . text
and .data sections & creates PTEs
marked as invalid

" The . text and .data sections
are copied, page by page, on
demand by the virtual memory
system

0x400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 0

Kernel virtual memory

User stack
(created at runtime)

’
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory
invisible to
user code

+«—3rsp
(stack
pointer)

<— brk

Loaded
from

+ the
executable
file

46

Carnegie Mellon

Summary

UProgrammer’s view of virtual memory
® Each process has its own private address space
® Cannot be corrupted by other processes

U System view of virtual memory
" Simplifies memory management and programming

" Simplifies protection by providing a convenient interpositioning point to
check permissions

" Allows using DRAM as a cache of disk when low on memory
" Efficient only because of locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47

	Slide 1
	Slide 2
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Creating and Terminating Processes
	Terminating Processes
	Creating Processes
	Hmmm, How Does This Work?!
	Slide 10
	Today
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Address Spaces
	Why Virtual Memory (VM)?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Today
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Slide 23
	Slide 24
	Slide 25
	Today
	VM as a Tool for Memory Protection
	Virtual Address Space of a Linux Process
	Linux Organizes VM as Collection of “Areas”
	Linux Page Fault Handling
	Today _clipboard0
	Slide 32
	Example Memory Hierarchy
	Slide 34
	Slide 35
	DRAM Cache Organization
	Enabling Data Structure: Page Table
	Page Hit
	Page Fault
	Handling Page Fault_clipboard1
	Handling Page Fault_clipboard2
	Handling Page Fault_clipboard3
	Handling Page Fault
	Allocating Pages
	Locality to the Rescue Again!
	Simplifying Linking and Loading
	Summary

