Virtual Memory: Concepts

15-213: Introduction to Computer Systems "17th" Lecture, July 8, 2020

Instructor:

Sol Boucher

Today

Processes: Concepts

- Address spaces
- VM as a tool for memory management
- VM as a tool for memory protection
- VM as a tool for caching

Processes

Definition: A process is an instance of a running program.

- One of the most profound ideas in computer science
- Not the same as "program" or "processor"

Process provides each program with two key abstractions:

- Logical control flow
 - Each program seems to have exclusive use of the CPU
 - Provided by kernel feature called context switching
- Private address space
 - Each program seems to have exclusive use of main memory.
 - Provided by CPU feature called virtual memory

Multiprocessing: The Illusion

Computer runs many processes simultaneously

- Applications for one or more users
 - Web browsers, email clients, editors, ...
- Background tasks
 - Monitoring network & I/O devices

Multiprocessing Example

00	0				X	xter	m					
Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads Load Avg: 1.03, 1.13, 1.14 CPU usage: 3.27% user, 5.15% sys, 91.56% idle SharedLibs: 576K resident, 0B data, 0B linkedit. MemRegions: 27958 total, 1127M resident, 35M private, 494M shared. PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free. VM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts. Networks: packets: 41046228/11G in, 66083096/77G out. Disks: 17874391/349G read, 12847373/594G written.												
PID	Command	%CPU	TIME	#TH	₩WQ	#PORT	#MREG	RPRVT	RSHRD	RSIZE	VPRVT	VSIZE
	Microsoft Of	0,0	02:28.34	4	1	202	418	21M	24M	21M	66M	763M
99051	usbmuxd	0.0	00:04.10	3	1	47	66	436K	216K	480K	60M	2422M
99006	iTunesHelper	0.0	00:01.23	2	1	55	78	728K	3124K	1124K	43M	2429M
84286	bash	0.0	00:00.11		0	20	24	224K	732K	484K	17M	2378M
	xterm		00:00.83		0	32	73	656K	872K	692K	9728K	2382M
	Microsoft Ex		21:58.97		3	360	954	16M	65M	46M	114M	1057M
	sleep	0.0	00:00.00		0	17	20	92K	212K	360K	9632K	2370M
		0.0	00:00.00		1	33	50	488K	220K	1736K	48M	2409M
	top	6.5	00:02.53		0	30	29	1416K	216K	2124K	17M	2378M
		0.0	00:00.02		1	53	64	860K	216K	2184K	53M	2413M
	ocspd	-	00:00.05		1 3	61	54	1268K	2644K	3132K	50M	2426M
			00:02.75			222+	389+	15M+	26M+	40M+	75M+	2556M+
	cookied mdworker	0.0	00:00.15		1 1	40 52	61 91	3316K 7628K	224K 7412K	4088K 16M	42M 48M	2411M 2438M
Jack and and also and					1	5Z	91	2464K	6148K	9976K	40m 44M	2436M 2434M
lunn	ing prog	zral	m "to	p" (n N	Mac	73	2404K	872K	532K	9700K	2382M
50078	emacs	0.0	00:06.70	1	ò	20	35	52K	216K	88K	18M	2392M
System has 123 processes, 5 of which are active												

Identified by Process ID (PID)

Preview: Creating and Terminating Processes

From a programmer's perspective, we can think of a process as being in one of three states

Running

Process is executing (or waiting to, as we'll see next week)

□ Stopped

Process execution is suspended until further notice (covered later)

Terminated

Process is stopped permanently

Terminating Processes

Programmer can explicitly terminate process by:

- Returning from the main routine
- Calling the exit function

□void exit(int status)

- Terminates with an exit status of status
- Convention: normal return status is 0, nonzero on error
- Another way to explicitly set the exit status is to return an integer value from the main routine

□exit is called once but never returns.

Creating Processes

Parent process creates a new running child process by calling fork

□int fork(void)

- Returns 0 to the child process, child's PID to parent process
- Child is *almost* identical to parent...

Different how?

fork is interesting (and often confusing) because it is called once but returns twice

Hmmm, How Does This Work?!

Solution: Virtual Memory (today and next lecture)

Creating Processes

Parent process creates a new running child process by calling fork

□int fork(void)

- Returns 0 to the child process, child's PID to parent process
- Child is almost identical to parent:
 - Child get an identical (but separate) copy of the parent's virtual address space.
 - Child gets identical copies of the parent's open file descriptors
 - Child has a different PID than the parent

□ fork is interesting (and often confusing) because it is called once but returns twice

Today

Processes: Concepts

Address spaces

- VM as a tool for memory management
- VM as a tool for memory protection
- VM as a tool for caching

A System Using Physical Addressing

Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

A System Using Virtual Addressing

Used in all modern servers, laptops, and smart phones

One of the great ideas in computer science

Address Spaces

Linear address space: Ordered set of contiguous non-negative integer addresses:

{0, 1, 2, 3 ... }

Virtual address space: Set of N = 2ⁿ virtual addresses {0, 1, 2, 3, ..., N-1}

Physical address space: Set of M = 2^m physical addresses {0, 1, 2, 3, ..., M-1}

Why Virtual Memory (VM)?

Simplifies memory management

Each process gets its own private address space

Isolates address spaces

- One process can't interfere with another's memory
- User program cannot access privileged kernel information and code

Allows addressing locations outside DRAM

- Programs can access "memory" to communicate with other devices
- The kernel can handle such accesses in software

Paging: Pages and Page Tables

□ A *page* is the *aligned* unit at which mapping is customized

- Typically 4 KB on modern systems
- A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.
 Main memory

S sets

Preview: Address Translation

Physical address

Admission of Guilt

□ Lie: "Memory can be viewed as an array of bytes"...

Actually discontinuous, with unmapped regions

□ Lie: "Memory addresses refer to locations in RAM"...

Programmer sees only virtual addresses, which CPU's MMU translates to physical addresses before sending them to the memory controller

□ Lie: "Memory addresses are 64 bits"...

- Current x86-64 CPU MMUs only support 48-bit virtual addresses, which is enough to address 256 TB of RAM
- Future CPUs may widen this without a change to the ISA

Today

- Processes: Concepts
- Address spaces
- VM as a tool for memory management
- VM as a tool for memory protection
- VM as a tool for caching

VM as a Tool for Memory Management

□ Key idea: each process has its own virtual address space

- Mapping function scatters addresses through physical memory
- Process only knows about virtual addresses, so mappings can change

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

VM as a Tool for Memory Management

Simplifying memory allocation

- Each virtual page can be mapped to any physical page
- A virtual page can be stored in different physical pages at different times

□ Sharing code and data among processes

Map virtual pages to the same physical page (here: PP 6)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Virtual Address Space of a Linux Process

Page Hit

Page hit: reference to page that is in physical memory

Page Fault

Page fault: reference to page that is not in physical memory

Today

- Processes: Concepts
- Address spaces
- VM as a tool for memory management
- VM as a tool for memory protection
- VM as a tool for caching

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

Virtual Address Space of a Linux Process

Linux Organizes VM as Collection of "Areas"

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Linux Page Fault Handling

Today

- □ Processes: Concepts
- Address spaces
- □VM as a tool for memory management
- □VM as a tool for memory protection
- □ VM as a tool for caching

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

- DRAM is about 10x slower than SRAM
- Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Paging: Once More w/ Feeling—err, swap

□ A *swap area* is an on-disk "overflow scratch space"

When running out of DRAM, the operating system can move pages here instead of crashing.

Page Hit

Page hit: in some ways like a DRAM "cache hit"

Page Fault

Page fault: in some ways like a DRAM "cache miss"

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Operating system selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

□ Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- □ If (working set size < main memory size)
 - Good performance for one process after compulsory misses

If (SUM(working set sizes) > main memory size)

Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

Linking and Loading Revisited

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading

- Allocate virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system

Summary

Programmer's view of virtual memory

- Each process has its own private address space
- Cannot be corrupted by other processes

System view of virtual memory

- Simplifies memory management and programming
- Simplifies protection by providing a convenient interpositioning point to check permissions
- Allows using DRAM as a cache of disk when low on memory
 - Efficient only because of locality