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Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching
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Processes
□ Definition: A process is an instance of a running 

program.
■ One of the most profound ideas in computer science
■ Not the same as “program” or “processor”

□ Process provides each program with two key 
abstractions:
■ Logical control flow

■ Each program seems to have exclusive use of the CPU
■ Provided by kernel feature called context switching

■ Private address space
■ Each program seems to have exclusive use of main memory. 
■ Provided by CPU feature called virtual memory
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Multiprocessing: The Illusion

□ Computer runs many processes simultaneously
▪ Applications for one or more users

▪ Web browsers, email clients, editors, …

▪ Background tasks

▪ Monitoring network & I/O devices
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Multiprocessing Example

□ Running program “top” on Mac
▪ System has 123 processes, 5 of which are active

▪ Identified by Process ID (PID)
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Preview: Creating and Terminating Processes

From a programmer’s perspective, we can think of a process 
as being in one of three states

□ Running
■ Process is executing (or waiting to, as we’ll see next week)

□ Stopped
■ Process execution is suspended until further notice (covered later)

□ Terminated
■ Process is stopped permanently 
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Terminating Processes

□ Programmer can explicitly terminate process by:
■ Returning from the main routine
■ Calling the exit function

□void exit(int status)
■ Terminates with an exit status of status
■ Convention: normal return status is 0, nonzero on error
■ Another way to explicitly set the exit status is to return an integer value from 

the main routine

□exit is called once but never returns.
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Creating Processes

□ Parent process creates a new running child process by 
calling fork

□int fork(void)
■ Returns 0 to the child process, child’s PID to parent process
■ Child is almost identical to parent...

□fork is interesting (and often confusing) because 
it is called once but returns twice

Different how?
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Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)
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Creating Processes

□ Parent process creates a new running child process by 
calling fork

□int fork(void)
■ Returns 0 to the child process, child’s PID to parent process
■ Child is almost identical to parent:

■ Child get an identical (but separate) copy of the parent’s virtual 
address space.

■ Child gets identical copies of the parent’s open file descriptors
■ Child has a different PID than the parent

□fork is interesting (and often confusing) because 
it is called once but returns twice
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Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching
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A System Using Physical Addressing

□ Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Addressing

□ Used in all modern servers, laptops, and smart phones
□ One of the great ideas in computer science
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Address Spaces

□ Linear address space: Ordered set of contiguous non-negative integer 
addresses:

{0, 1, 2, 3 … }

□ Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

□ Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}
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Why Virtual Memory (VM)?

□ Simplifies memory management
■ Each process gets its own private address space

□ Isolates address spaces
■ One process can’t interfere with another’s memory
■ User program cannot access privileged kernel information and code

□ Allows addressing locations outside DRAM
■ Programs can access “memory” to communicate with other devices
■ The kernel can handle such accesses in software
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Paging: Pages and Page Tables
□ A page is the aligned unit at which mapping is customized

■ Typically 4 KB on modern systems
□ A page table is an array of page table entries (PTEs) that maps 

virtual pages to physical pages. 
■ Per-process kernel data structure in DRAM
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Remember: Set Associative Cache
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address :

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Index to 
find set

2 lines per set

S sets

Block
offset
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Preview: Address Translation

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table 
base register (PTBR)

(CR3 in x86)

Page table 

Physical page table 
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1
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Admission of Guilt

□ Lie: “Memory can be viewed as an array of bytes”...
■ Actually discontinuous, with unmapped regions

□ Lie: “Memory addresses refer to locations in RAM”...
■ Programmer sees only virtual addresses, which CPU’s MMU translates to 

physical addresses before sending them to the memory controller

□ Lie: “Memory addresses are 64 bits”...
■ Current x86-64 CPU MMUs only support 48-bit virtual addresses, which is 

enough to address 256 TB of RAM
■ Future CPUs may widen this without a change to the ISA
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Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching
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VM as a Tool for Memory Management
□ Key idea: each process has its own virtual address space

■ Mapping function scatters addresses through physical memory
■ Process only knows about virtual addresses, so mappings can change

Virtual 
Address 
Space for 
Process 1:

Main 
memory 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation



Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
□ Simplifying memory allocation

■ Each virtual page can be mapped to any physical page
■ A virtual page can be stored in different physical pages at different times

□ Sharing code and data among processes
■ Map virtual pages to the same physical page (here: PP 6)
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Virtual Address Space of a Linux Process

Kernel code and data

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical  for 
each process

Process-specific data
 structs  (ptables,

task and mm structs, 
kernel stack)

Kernel
virtual 
memory

0x00400000

Different for 
each process

Memory mapped 
region for shared 

libraries
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Page Hit
□ Page hit: reference to page that is in physical memory
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Page Fault
□ Page fault: reference to page that is not in physical memory
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Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching
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VM as a Tool for Memory Protection
□ Extend PTEs with permission bits
□ MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes

Yes

Yes

Yes

No
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Virtual Address Space of a Linux Process

Kernel code and data

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0
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Process
virtual
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Physical memoryIdentical  for 
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Process-specific data
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Kernel
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Different for 
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Memory mapped 
region for shared 
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vm_next

vm_next

Linux Organizes VM as Collection of “Areas” 

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

□ pgd: 
■ Page global directory address
■ Points to L1 page table

□ vm_prot:
■ Read/write permissions for 

this area

□ vm_flags
■ Pages shared with other 

processes or private to this 
process

vm_flags

vm_flags

vm_flags

Each process has own task_struct, etc
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Linux Page Fault Handling 

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault …?!

Protection exception:
e.g., violating permission by 
writing to a read-only page (Linux 
reports as Segmentation fault)
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Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching
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Caching… as in a cache like this, right?
□ No! Doesn’t work like a CPU cache.
□ Cache: A smaller, faster storage… staging area.

t bits 0…01 100

Address :

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Index to 
find set

2 lines per set

S sets

Block
offset
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Remember: Memory       Hierarchy
Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved 
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk 
blocks retrieved from local 
disks.
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Remember: Memory       Hierarchy
Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache 
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L6:

Where is virtual memory?!

It is not a cache!

It is an abstraction that 
allows customizing memory 
addresses’ meanings.

Here, it allows main memory 
to serve as a cache for disk.
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Remember: Memory       Hierarchy
Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache 
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L6:

Inclusive cache: each 
level is a strict superset of 
the one above
(depends on architecture)

Non-inclusive cache: 
each level may contain 
elements not present in 
the others
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DRAM Cache Organization

□ DRAM cache organization driven by the enormous miss penalty
■ DRAM is about 10x slower than SRAM
■ Disk is about 10,000x slower than DRAM

□ Consequences
■ Large page (block) size: typically 4 KB, sometimes 4 MB
■ Fully associative 

● Any VP can be placed in any PP
● Requires a “large” mapping function – different from cache memories

■ Highly sophisticated, expensive replacement algorithms
● Too complicated and open-ended to be implemented in hardware

■ Write-back rather than write-through
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Paging: Once More w/ Feeling—err, swap
□ A swap area is an on-disk “overflow scratch space”

■ When running out of DRAM, the operating system can move pages here 
instead of crashing.

null

null

Memory resident
page table

(DRAM)

Main memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3
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Page Hit
□ Page hit: in some ways like a DRAM “cache hit”

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Page Fault
□ Page fault: in some ways like a DRAM “cache miss”

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
□ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)
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VP 4

Swap area
(disk)

Valid
0
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1

0

1
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1

Physical page
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disk address
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PP 3
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Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap area
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)
□ Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap area
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to 
DRAM is known as demand paging
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Allocating Pages

□ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
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Swap area
(disk)

Valid
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1

1
0
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0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5



Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

□ Virtual memory seems terribly inefficient, but it works 
because of locality. 

□ At any point in time, programs tend to access a set of active 
virtual pages called the working set
■ Programs with better temporal locality will have smaller working sets

□ If ( working set size < main memory size ) 
■ Good performance for one process after compulsory misses

□ If ( SUM(working set sizes) > main memory size ) 
■ Thrashing: Performance meltdown where pages are swapped (copied) in 

and out continuously
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Linking and Loading Revisited

□ Linking 
■ Each program has similar virtual 

address space

■ Code, data, and heap always start 
at the same addresses.

□ Loading 
■ Allocate virtual pages for .text 

and .data sections & creates PTEs 
marked as invalid

■ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp 
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file



Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

□ Programmer’s view of virtual memory
■ Each process has its own private address space
■ Cannot be corrupted by other processes

□ System view of virtual memory
■ Simplifies memory management and programming
■ Simplifies protection by providing a convenient interpositioning point to 

check permissions
■ Allows using DRAM as a cache of disk when low on memory

■ Efficient only because of locality


	Slide 1
	Slide 2
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Creating and Terminating Processes
	Terminating Processes
	Creating Processes
	Hmmm, How Does This Work?!
	Slide 10
	Today
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Address Spaces
	Why Virtual Memory (VM)?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Today
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Slide 23
	Slide 24
	Slide 25
	Today
	VM as a Tool for Memory Protection
	Virtual Address Space of a Linux Process
	Linux Organizes VM as Collection of “Areas”
	Linux Page Fault Handling
	Today _clipboard0
	Slide 32
	Example Memory Hierarchy
	Slide 34
	Slide 35
	DRAM Cache Organization
	Enabling Data Structure: Page Table
	Page Hit
	Page Fault
	Handling Page Fault_clipboard1
	Handling Page Fault_clipboard2
	Handling Page Fault_clipboard3
	Handling Page Fault
	Allocating Pages
	Locality to the Rescue Again!
	Simplifying Linking and Loading
	Summary

