
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Memory: Concepts

15-213: Introduction to Computer Systems
“17th” Lecture, July 8, 2020

Instructor:

Sol Boucher

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes
□ Definition: A process is an instance of a running

program.
■ One of the most profound ideas in computer science
■ Not the same as “program” or “processor”

□ Process provides each program with two key
abstractions:
■ Logical control flow

■ Each program seems to have exclusive use of the CPU
■ Provided by kernel feature called context switching

■ Private address space
■ Each program seems to have exclusive use of main memory.
■ Provided by CPU feature called virtual memory

CPU
Registers

Memory

Stack
Heap

Code
Data

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing: The Illusion

□ Computer runs many processes simultaneously
▪ Applications for one or more users

▪ Web browsers, email clients, editors, …

▪ Background tasks

▪ Monitoring network & I/O devices

CPU
Registers

Memory

Stack
Heap

Code
Data

CPU
Registers

Memory

Stack
Heap

Code
Data …

CPU
Registers

Memory

Stack
Heap

Code
Data

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiprocessing Example

□ Running program “top” on Mac
▪ System has 123 processes, 5 of which are active

▪ Identified by Process ID (PID)

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Preview: Creating and Terminating Processes

From a programmer’s perspective, we can think of a process
as being in one of three states

□ Running
■ Process is executing (or waiting to, as we’ll see next week)

□ Stopped
■ Process execution is suspended until further notice (covered later)

□ Terminated
■ Process is stopped permanently

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Terminating Processes

□ Programmer can explicitly terminate process by:
■ Returning from the main routine
■ Calling the exit function

□void exit(int status)
■ Terminates with an exit status of status
■ Convention: normal return status is 0, nonzero on error
■ Another way to explicitly set the exit status is to return an integer value from

the main routine

□exit is called once but never returns.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

□ Parent process creates a new running child process by
calling fork

□int fork(void)
■ Returns 0 to the child process, child’s PID to parent process
■ Child is almost identical to parent...

□fork is interesting (and often confusing) because
it is called once but returns twice

Different how?

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hmmm, How Does This Work?!
Process 1 Process 2 Process n

Solution: Virtual Memory (today and next lecture)

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Creating Processes

□ Parent process creates a new running child process by
calling fork

□int fork(void)
■ Returns 0 to the child process, child’s PID to parent process
■ Child is almost identical to parent:

■ Child get an identical (but separate) copy of the parent’s virtual
address space.

■ Child gets identical copies of the parent’s open file descriptors
■ Child has a different PID than the parent

□fork is interesting (and often confusing) because
it is called once but returns twice

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Physical Addressing

□ Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

A System Using Virtual Addressing

□ Used in all modern servers, laptops, and smart phones
□ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Spaces

□ Linear address space: Ordered set of contiguous non-negative integer
addresses:

{0, 1, 2, 3 … }

□ Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

□ Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Virtual Memory (VM)?

□ Simplifies memory management
■ Each process gets its own private address space

□ Isolates address spaces
■ One process can’t interfere with another’s memory
■ User program cannot access privileged kernel information and code

□ Allows addressing locations outside DRAM
■ Programs can access “memory” to communicate with other devices
■ The kernel can handle such accesses in software

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Paging: Pages and Page Tables
□ A page is the aligned unit at which mapping is customized

■ Typically 4 KB on modern systems
□ A page table is an array of page table entries (PTEs) that maps

virtual pages to physical pages.
■ Per-process kernel data structure in DRAM

null

null

null

Memory resident
page table

(DRAM)

Main memory
(DRAM)

VP 7

Other devices

Valid
0

1

0
0

0

1

0

1

“Pointer”
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

Disk

Distributed
shared memory

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Remember: Set Associative Cache
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address :

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Index to
find set

2 lines per set

S sets

Block
offset

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Preview: Address Translation

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register (PTBR)

(CR3 in x86)

Page table

Physical page table
address for the current
process

Valid bit = 0:
Page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Valid bit = 1

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Admission of Guilt

□ Lie: “Memory can be viewed as an array of bytes”...
■ Actually discontinuous, with unmapped regions

□ Lie: “Memory addresses refer to locations in RAM”...
■ Programmer sees only virtual addresses, which CPU’s MMU translates to

physical addresses before sending them to the memory controller

□ Lie: “Memory addresses are 64 bits”...
■ Current x86-64 CPU MMUs only support 48-bit virtual addresses, which is

enough to address 256 TB of RAM
■ Future CPUs may widen this without a change to the ISA

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
□ Key idea: each process has its own virtual address space

■ Mapping function scatters addresses through physical memory
■ Process only knows about virtual addresses, so mappings can change

Virtual
Address
Space for
Process 1:

Main
memory
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Management
□ Simplifying memory allocation

■ Each virtual page can be mapped to any physical page
■ A virtual page can be stored in different physical pages at different times

□ Sharing code and data among processes
■ Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Main
memory
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

Memory mapped
region for shared

libraries

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit
□ Page hit: reference to page that is in physical memory

null

null

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

Virtual address

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault
□ Page fault: reference to page that is not in physical memory

null

null

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

Virtual address

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

VM as a Tool for Memory Protection
□ Extend PTEs with permission bits
□ MMU checks these bits on each access

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

EXEC

Yes

EXEC

Yes

Yes

Yes

Yes

No

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Kernel code and data

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific data
 structs (ptables,

task and mm structs,
kernel stack)

Kernel
virtual
memory

0x00400000

Different for
each process

Memory mapped
region for shared

libraries

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

Text

Data

Shared libraries

0

□ pgd:
■ Page global directory address
■ Points to L1 page table

□ vm_prot:
■ Read/write permissions for

this area

□ vm_flags
■ Pages shared with other

processes or private to this
process

vm_flags

vm_flags

vm_flags

Each process has own task_struct, etc

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linux Page Fault Handling

read
1

write

2

read

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

Process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Segmentation fault:
accessing a non-existing page

Normal page fault …?!

Protection exception:
e.g., violating permission by
writing to a read-only page (Linux
reports as Segmentation fault)

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today

□ Processes: Concepts
□ Address spaces
□ VM as a tool for memory management
□ VM as a tool for memory protection
□ VM as a tool for caching

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Caching… as in a cache like this, right?
□ No! Doesn’t work like a CPU cache.
□ Cache: A smaller, faster storage… staging area.

t bits 0…01 100

Address :

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

Index to
find set

2 lines per set

S sets

Block
offset

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Remember: Memory Hierarchy
Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files
retrieved from disks
on remote servers

L2 cache
(SRAM)

L1 cache holds cache lines retrieved
from the L2 cache.

CPU registers hold words retrieved
from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds disk
blocks retrieved from local
disks.

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Remember: Memory Hierarchy
Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L6:

Where is virtual memory?!

It is not a cache!

It is an abstraction that
allows customizing memory
addresses’ meanings.

Here, it allows main memory
to serve as a cache for disk.

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Remember: Memory Hierarchy
Regs

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
and
cheaper
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

L2 cache
(SRAM)

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and
costlier
(per byte)
storage
devices

L3 cache
(SRAM)

L6:

Inclusive cache: each
level is a strict superset of
the one above
(depends on architecture)

Non-inclusive cache:
each level may contain
elements not present in
the others

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

DRAM Cache Organization

□ DRAM cache organization driven by the enormous miss penalty
■ DRAM is about 10x slower than SRAM
■ Disk is about 10,000x slower than DRAM

□ Consequences
■ Large page (block) size: typically 4 KB, sometimes 4 MB
■ Fully associative

● Any VP can be placed in any PP
● Requires a “large” mapping function – different from cache memories

■ Highly sophisticated, expensive replacement algorithms
● Too complicated and open-ended to be implemented in hardware

■ Write-back rather than write-through

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Paging: Once More w/ Feeling—err, swap
□ A swap area is an on-disk “overflow scratch space”

■ When running out of DRAM, the operating system can move pages here
instead of crashing.

null

null

Memory resident
page table

(DRAM)

Main memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Hit
□ Page hit: in some ways like a DRAM “cache hit”

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Page Fault
□ Page fault: in some ways like a DRAM “cache miss”

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
□ Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Swap area
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap area
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Handling Page Fault
□ Page miss causes page fault (an exception)
□ Operating system selects a victim to be evicted (here VP 4)
□ Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap area
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Key point: Waiting until the miss to copy the page to
DRAM is known as demand paging

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocating Pages

□ Allocating a new page (VP 5) of virtual memory.

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Swap area
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

VP 5

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locality to the Rescue Again!

□ Virtual memory seems terribly inefficient, but it works
because of locality.

□ At any point in time, programs tend to access a set of active
virtual pages called the working set
■ Programs with better temporal locality will have smaller working sets

□ If (working set size < main memory size)
■ Good performance for one process after compulsory misses

□ If (SUM(working set sizes) > main memory size)
■ Thrashing: Performance meltdown where pages are swapped (copied) in

and out continuously

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Linking and Loading Revisited

□ Linking
■ Each program has similar virtual

address space

■ Code, data, and heap always start
at the same addresses.

□ Loading
■ Allocate virtual pages for .text

and .data sections & creates PTEs
marked as invalid

■ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

□ Programmer’s view of virtual memory
■ Each process has its own private address space
■ Cannot be corrupted by other processes

□ System view of virtual memory
■ Simplifies memory management and programming
■ Simplifies protection by providing a convenient interpositioning point to

check permissions
■ Allows using DRAM as a cache of disk when low on memory

■ Efficient only because of locality

	Slide 1
	Slide 2
	Processes
	Multiprocessing: The Illusion
	Multiprocessing Example
	Creating and Terminating Processes
	Terminating Processes
	Creating Processes
	Hmmm, How Does This Work?!
	Slide 10
	Today
	A System Using Physical Addressing
	A System Using Virtual Addressing
	Address Spaces
	Why Virtual Memory (VM)?
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Today
	VM as a Tool for Memory Management
	VM as a Tool for Memory Management
	Slide 23
	Slide 24
	Slide 25
	Today
	VM as a Tool for Memory Protection
	Virtual Address Space of a Linux Process
	Linux Organizes VM as Collection of “Areas”
	Linux Page Fault Handling
	Today _clipboard0
	Slide 32
	Example Memory Hierarchy
	Slide 34
	Slide 35
	DRAM Cache Organization
	Enabling Data Structure: Page Table
	Page Hit
	Page Fault
	Handling Page Fault_clipboard1
	Handling Page Fault_clipboard2
	Handling Page Fault_clipboard3
	Handling Page Fault
	Allocating Pages
	Locality to the Rescue Again!
	Simplifying Linking and Loading
	Summary

