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Thread-Level Parallelism

15-213 / 18-213 / 15-513: Introduction to Computer Systems
27th Lecture, July 30, 2020
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Logisitics

 Proxy Checkpoint Due Tomorrow 11:59pm EDT

 Final Exam full details soon
▪ Review session: Tuesday, 8/4  in lecture slot

▪ Final will be on Thursday, 8/6 at 6pm, 9pm or 12am (midnight)
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Today

 Parallel Computing Hardware
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort
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Typical Multicore Processor

 Multiple processors operating with coherent view of memory

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core 0

Regs

L1 
d-cache

L1 
i-cache

L2 unified cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream 
of operations

 Operations mapped onto functional units to execute in parallel

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control
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Instruction 
Decoder

Op. Queue
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Instruction
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Hyperthreading Implementation

 Replicate instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int
Arith

Int
Arith
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Arith

Load /
Store

Instruction Control

Reg B

Instruction 
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A
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Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
▪ Intel Xeon E5520 @ 2.27 GHz

▪ Nehalem, ca. 2010

▪ 8 Cores

▪ Each can do 2x hyperthreading
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Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

▪ e.g., one thread per client to prevent one from delaying another

 Multi-core CPUs offer another opportunity

▪ Spread work over threads executing in parallel on N cores

▪ Happens automatically, if many independent tasks

▪ e.g., running many applications or serving many clients

▪ Can also write code to make one big task go faster

▪ by organizing it as multiple parallel sub-tasks

 Shark machines can execute 16 threads at once

▪ 8 cores, each with 2-way hyperthreading

▪ Theoretical speedup of 16X

▪ never achieved in our benchmarks
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Non-Coherent Cache Scenario

 Write-back caches, without 
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a: 2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

At later points, a:2 and b:200
are written back to main memory
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Modified Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2M

b:200M

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Modified Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a: 2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa: 2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for 
one of its M-tagged blocks

 Supply value from cache
(Note: value in memory 
may be stale)

 Set tag to S
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses 

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Memory Consistency

 What are the possible values printed?
▪ Depends on memory consistency model

▪ Abstract model of how hardware handles concurrent accesses 

 Sequential consistency
▪ As if only one operation at a time, in an order consistent with the 

order of operations within each thread

▪ Thus, overall effect consistent with each individual thread but 
otherwise allows an arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Memory Models

 Sequentially Consistent:
▪ Each thread executes in proper order, any interleaving

 To ensure, requires
▪ Proper cache/memory behavior

▪ Proper intra-thread ordering constraints

 Thread ordering constraints
▪ Use synchronization to ensure the program is free of data races
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Today

 Parallel  Computing Hardware
▪ Multicore

▪ Multiple separate processors on single chip

▪ Hyperthreading

▪ Efficient execution of multiple threads on single core

 Consistency Models
▪ What happens when multiple threads are reading & writing shared state

 Thread-Level Parallelism
▪ Splitting program into independent tasks

▪ Example: Parallel summation

▪ Examine some performance artifacts

▪ Divide-and conquer parallelism

▪ Example: Parallel quicksort
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Summation Example

 Sum numbers 0, …, N-1
▪ Should add up to (N-1)*N/2

 Partition into K ranges

▪ N/K values each

▪ Each of the t threads processes 1 range 

▪ Accumulate leftover values serially

 Method #1: All threads update single global variable
▪ 1A: No synchronization

▪ 1B: Synchronize with pthread semaphore

▪ 1C: Synchronize with pthread mutex

▪ “Binary” semaphore.  Only values 0 & 1
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Accumulating in Single Global Variable: 
Declarations

typedef unsigned long data_t;

/* Single accumulator */

volatile data_t global_sum;

/* Mutex & semaphore for global sum */

sem_t semaphore;

pthread_mutex_t mutex;

/* Number of elements summed by each thread */

size_t nelems_per_thread;

/* Keep track of thread IDs */

pthread_t tid[MAXTHREADS];

/* Identify each thread */

int myid[MAXTHREADS];
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Accumulating in Single Global Variable: 
Declarations
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Accumulating in Single Global Variable: 
Operation

nelems_per_thread = nelems / nthreads;

/* Set global value */

global_sum = 0;

/* Create threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;

Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

}                                                

for (i = 0; i < nthreads; i++)                   

Pthread_join(tid[i], NULL);                  

result = global_sum; 

/* Add leftover elements */

for (e = nthreads * nelems_per_thread; e < nelems; e++)

result += e;

Thread ID Thread routine

Thread arguments
(void *p) 
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Thread Function: No Synchronization

void *sum_race(void *vargp) 

{

int myid = *((int *)vargp);          

size_t start = myid * nelems_per_thread;

size_t end = start + nelems_per_thread; 

size_t i;

for (i = start; i < end; i++) {

global_sum += i;                  

}

return NULL;

}
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Unsynchronized Performance

 N = 230

 Best speedup = 2.86X

 Gets wrong answer when > 1 thread! Why?
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Thread Function: Semaphore / Mutex

void *sum_sem(void *vargp) 

{

int myid = *((int *)vargp);

size_t start = myid * nelems_per_thread;

size_t end = start + nelems_per_thread;

size_t i;

for (i = start; i < end; i++) {

sem_wait(&semaphore);

global_sum += i;

sem_post(&semaphore);

}

return NULL;

}

sem_wait(&semaphore);

global_sum += i;

sem_post(&semaphore); 

pthread_mutex_lock(&mutex);

global_sum += i;

pthread_mutex_unlock(&mutex);

Semaphore

Mutex
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Semaphore / Mutex Performance

 Terrible Performance
▪ 2.5 seconds ➔ ~10 minutes

 Mutex 3X faster than semaphore

 Clearly, neither is successful

What is main reason for 
poor performance?
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Separate Accumulation

 Method #2: Each thread accumulates into separate variable
▪ 2A: Accumulate in contiguous array elements

▪ 2B: Accumulate in spaced-apart array elements

▪ 2C: Accumulate in registers

/* Partial sum computed by each thread */ 

data_t psum[MAXTHREADS*MAXSPACING];

/* Spacing between accumulators */

size_t spacing = 1;
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Separate Accumulation: Operation

nelems_per_thread = nelems / nthreads;

/* Create threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;

psum[i*spacing] = 0;

Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);

}                                                

for (i = 0; i < nthreads; i++)                   

Pthread_join(tid[i], NULL);                  

result = 0;

/* Add up the partial sums computed by each thread */

for (i = 0; i < nthreads; i++)                   

result += psum[i*spacing]; 

/* Add leftover elements */

for (e = nthreads * nelems_per_thread; e < nelems; e++)

result += e;
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Thread Function: Memory Accumulation

void *sum_global(void *vargp) 

{

int myid = *((int *)vargp);          

size_t start = myid * nelems_per_thread;

size_t end = start + nelems_per_thread; 

size_t i;

size_t index = myid*spacing;

psum[index] = 0;

for (i = start; i < end; i++) {

psum[index] += i;                  

}

return NULL;

}

Where is the mutex?
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Memory Accumulation Performance

 Clear threading advantage
▪ Adjacent speedup: 5 X

▪ Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

 Why does spacing the accumulators apart matter?
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False Sharing

 Coherence maintained on cache blocks

 To update psum[i], thread i must have exclusive access
▪ Threads sharing common cache block will keep fighting each other 

for access to block

… …

0 7 8 15

Cache Block m Cache Block m+1

psum
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False Sharing Performance

▪ Best spaced-apart performance 2.8 X better than best adjacent

 Demonstrates cache block size = 64
▪ 8-byte values

▪ No benefit increasing spacing beyond 8
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Thread Function: Register Accumulation

void *sum_local(void *vargp) 

{

int myid = *((int *)vargp);          

size_t start = myid * nelems_per_thread;

size_t end = start + nelems_per_thread; 

size_t i;

size_t index = myid*spacing;

data_t sum = 0;

for (i = start; i < end; i++) {

sum += i;                  

}

psum[index] = sum;

return NULL;

}



Carnegie Mellon

33

Register Accumulation Performance

 Clear threading advantage
▪ Speedup = 7.5 X

 2X better than fastest memory accumulation

Beware the speedup metric!
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Lessons learned

 Sharing memory can be expensive
▪ Pay attention to true sharing

▪ Pay attention to false sharing

 Use registers whenever possible
▪ (Remember cachelab)

▪ Use local cache whenever possible

 Deal with leftovers

 When examining performance, compare to best possible 
sequential implementation
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A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
▪ Use parallel version of quicksort

 Sequential quicksort of set of values X
▪ Choose “pivot” p from X

▪ Rearrange X into

▪ L: Values  p

▪ R: Values  p

▪ Recursively sort L to get L

▪ Recursively sort R to get R

▪ Return L : p : R
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Sequential Quicksort Visualized

X

p

L p R

p2L2 R2

p2

•

•

•

L
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Sequential Quicksort Visualized

X

p R

p3

L3 R3p3

L

•

•

•

R

pL R
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Sequential Quicksort Code

 Sort nele elements starting at base
▪ Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}
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Parallel Quicksort
 Parallel quicksort of set of values X

▪ If N  Nthresh, do sequential quicksort

▪ Else

▪ Choose “pivot” p from X

▪ Rearrange X into

– L: Values  p

– R: Values  p

▪ Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

▪ Return L : p : R
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Parallel Quicksort Visualized

X

p

L p R

p2 p3

p2L2 R2 L3 R3p3p

•

•

•

L

•

•

•

Rp
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Thread Structure: Sorting Tasks

 Task: Sort subrange of data
▪ Specify as:

▪ base: Starting address

▪ nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads
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Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads



Carnegie Mellon

43

Large Sort Task Operation

X

  

pL R

X

  

pL R

Partition Subrange

Spawn 2 tasks
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Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}
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Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}
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Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition (if size of part > 1)

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
▪ F too small: Not enough parallelism

▪ F too large: Thread overhead too high
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Amdahl’s Law (Travel Analogy)

 Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

 Or, old fashioned SST way:
▪ Fly jet from PIT -> JFK: 1.5 Hours

▪ Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x

 Or, Using FTL:
▪ Fly jet from PIT -> JFK: 1.5 Hours

▪ Fly SST from JFK -> LHR: .01 Hours 1.51 Hours ~5x

 Best possible speed up is 5X, even with FTL because have to get 
to new York.

Speed-Up
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Amdahl’s Law

 Overall problem
▪ T Total sequential time required

▪ p Fraction of total that can be sped up (0  p   1)

▪ k Speedup factor

 Resulting Performance
▪ Tk = pT/k + (1-p)T

▪ Portion which can be sped up runs k times faster

▪ Portion which cannot be sped up stays the same

▪ Maximum possible speedup

▪ k = 

▪ T = (1-p)T
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Amdahl’s Law (Travel Analogy)

 Flying jet non-stop from PIT -> LHR: 7.5 Hours 1

 Or, old fashioned SST way:
▪ Fly jet from PIT -> JFK: 1.5 Hours

▪ Fly SST from JFK -> LHR: 3.5 Hours 5 Hours 1.5x

 Or, Using FTL:
▪ Fly jet from PIT -> JFK: 1.5 Hours

▪ Fly SST from JFK -> LHR: .01 Hours 1.51 Hours ~5x

 Best possible speed up is 5X, even with FTL because have to get 
to new York.

▪ T=7.5, p=6/7.5=.8, k=   T = (1-p)T=1.5 max speed-up =5x 

Speed-Up
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Amdahl’s Law Example

 Overall problem
▪ T = 10 Total time required

▪ p = 0.9 Fraction of total which can be sped up

▪ k = 9 Speedup factor

 Resulting Performance
▪ T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0      (a 5x speedup)

 Maximum possible speedup
▪ T = 0.1 * 10.0 = 1.0       (a 10x speedup)

▪ With infinite parallel computing resources!

▪ Limit speedup shows algorithmic limitation
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Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
▪ Top-level partition: No speedup

▪ Second level:  2X speedup

▪ kth level:   2k-1X speedup

 Implications
▪ Good performance for small-scale parallelism

▪ Would need to parallelize partitioning step to get large-scale 
parallelism

▪ Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Lessons Learned

 Must have parallelization strategy
▪ Partition into K independent parts

▪ Divide-and-conquer

 Inner loops must be synchronization free
▪ Synchronization operations very expensive

 Watch out for hardware artifacts
▪ Need to understand processor & memory structure

▪ Sharing and false sharing of global data

 Beware of Amdahl’s Law
▪ Serial code can become bottleneck

 You can do it!
▪ Achieving modest levels of parallelism is not difficult

▪ Set up experimental framework and test multiple strategies


