
Carnegie Mellon

15-213 Recitation: Attack Lab

10 June 2020

Carnegie Mellon

Agenda

■Reminders
■Buffer Overflow Attacks
■Attack Lab Activities

Carnegie Mellon

Reminders

■ Attack lab out Monday, due Monday, June 15
■ You can use 1 grace day
■ No penalties for solving targets incorrectly (a la bomb lab detonations)

Carnegie Mellon

Attack Lab

■We’re letting you hijack programs by running
buffer overflow attacks on them…

■ To understand stack discipline and stack frames

■ To defeat relatively secure programs with return
oriented programming

Carnegie Mellon

Stack Smashing Attack

■ callq pushes the return address onto the
stack

■ retq pops this return address and jumps to
it

Next return
address$rsp

Carnegie Mellon

Buffer Overflows

■ Local string variables are stored on the
stack

■ Some C functions do not check sizes of
strings

Next return
address

Space
allocated for

string
$rsp

Carnegie Mellon

Buffer Overflows

■ You can write a string that
overwrites the return address

■ Activity 1 steps through an
example of overwriting the return
address on the stack

Extra long
string input

$rsp

Next return
address

Space
allocated for

string

Carnegie Mellon

Executing Commands on the Stack

■What if instead of jumping to a predefined
function, we jumped to code on the stack?

■ Activity 2 steps through an example of
executing code on the stack

Return address
points to
assembly

above

Assembly
instructions on

the stack

$rsp

Carnegie Mellon

OS Countermeasures

■ Executable code is not allowed on the stack
(unless we specifically allow it – e.g. through
mprotect like we do for activity 2)

■ Thus, we must use executable code that already
exists in the program to do what we want

■ But code often doesn’t already contain our exploit
function – so what can we do instead?

Carnegie Mellon

Return-Oriented Programming

■Goal: execute a small section of code, return, call
another small section of code. Repeat until you
execute your exploit

■ Activity 3 steps you through an example of a
return-oriented programming exploit

Carnegie Mellon

Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to

purposefully overwrite the stack
■ Activity 1 – overwrite the return addresses (Buffer

Overflow)
■ Activity 2 – write assembly instructions onto the stack
■ Activity 3 – use byte sequences in libc as the

instructions (Return-Oriented Programming)

Carnegie Mellon

Attack Lab Activities

■Work in pairs: one student needs a laptop
■ Login to a shark machine
$ wget http://www.cs.cmu.edu/~213/activities/attack-lab-rec.tar

$ tar xf attack-lab-rec.tar

$ cd attack-lab-rec

$ make (only do this if the executables aren’t present)
$ gdb act1

http://www.cs.cmu.edu/~213/activities/attack-lab-rec.tar

Carnegie Mellon

Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

A. 0x400c63 is the address to return to in main

Carnegie Mellon

Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values

(gdb) stepi // Keep doing this until

(gdb)
clobber () at support.s:16
16 ret

(gdb) x $rsp

Q. Has the return address changed?

A. 0x401040 was the first number pointed to by $rdi
(gdb) finish // Should exit and print out “Hi!”

Carnegie Mellon

Activity 1 Post

■Clobber overwrites part of the stack with memory at
$rdi, including the all-important return address

■ In act1, it writes two new return addresses:
■ 0x401040: address of printHi()
■ 0x400560: address in main

0x7fffffffe338

0x000000400c63

0x000000400560

0x000000401040
0x000000400560

Call clobber()

Clobber executes

ret

In printHi()
ret

In main()

Carnegie Mellon

Activity 2
$ gdb act2

(gdb) break clobber

(gdb) run

(gdb) x $rsp

Q. What is the address of the stack and the return address?

A. 0x7fffffffdd38 -> 0x400f5a
(gdb) x /4gx $rdi

Q. What will the new return address be?

A. 0x7fffffffdd40 (First address stored using $rdi)

Carnegie Mellon

Activitity 2 Continued

(gdb) x /5i $rdi + 8// Display as instructions

Q. Why $rdi + 8?
A. Want to ignore the 8-byte return address

Q. What are the three addresses?

A. 0x49b259, 0x402eb0, 0x401fe0
(gdb) break puts

(gdb) break exit

Q. Do these addresses look familiar?
A. puts – 0x402eb0, exit – 0x401fe0

Carnegie Mellon

Activity 2 Post
■Normally programs cannot execute instructions on the

stack
■ Main used mprotect to disable the memory protection for this activity

■Clobber wrote an address that’s on the stack as a
return address

■ Followed by a sequence of instructions
■ Three addresses show up in the exploit:

▪ 0x49b259 à “Hi\n” string
▪ 0x402eb0 à puts() function
▪ 0x401fe0 à exit() function

Carnegie Mellon

Activity 3
$ gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack? Why is this
important?

A. 0x401a6e, this is the address to return to from clobber

Carnegie Mellon

Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

A. Pops next stack value into $rdi, then returns

Q. Check the other addresses. Note that some are return
addresses and some are for data. When you continue,

what will the code now do?
A. Print “Hi\n”

Carnegie Mellon

Activity 3 Post
■ It’s harder to stop programs from running existing

pieces of code in the executable.

■Clobber wrote multiple return addresses (aka gadgets)
that each performed a small task, along with data that
will get popped off the stack while running the gadgets.

■0x401a6e: pop %rdi; retq
■0x4941f0: Pointer to the string “Hi\n”
■0x475f6a: pop %rax; retq
■0x401060: Address of a printing function
■0x47664b: callq *%rax

Carnegie Mellon

■Note that some of the return addresses actually
cut off bytes from existing instructions

Activity 3 Post

0x457d0b …0c …0d

pop %r15 retq
41 5f c3

pop %rdi retq
5f c3

Carnegie Mellon

If you get stuck…

■ Please read the writeup!
■ CS:APP Chapter 3

■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Office hours Sundays - Fridays 6-10PM EDT on Z00m

■ Also Mondays 11AM-1PM, as a treat!

■ Post a private question on Piazza

■ man gdb – gdb's help command

http://www.cs.cmu.edu/~213

Carnegie Mellon

Attack Lab Tools
¢ gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the
instructions

¢ ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets

See the writeup for more details on how to use this

¢ (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful for tracing to see if an exploit is working

