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Agenda

■Reminders
■Buffer Overflow Attacks
■Attack Lab Activities
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Reminders

■ Attack lab out Monday, due Monday, June 15
■ You can use 1 grace day
■ No penalties for solving targets incorrectly (a la bomb lab detonations)
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Attack Lab

■We’re letting you hijack programs by running 
buffer overflow attacks on them…

■ To understand stack discipline and stack frames

■ To defeat relatively secure programs with return 
oriented programming
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Stack Smashing Attack

■ callq pushes the return address onto the 
stack

■ retq pops this return address and jumps to 
it

Next return 
address$rsp
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Buffer Overflows

■ Local string variables are stored on the 
stack

■ Some C functions do not check sizes of 
strings

Next return 
address

Space 
allocated for 

string
$rsp
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Buffer Overflows

■ You can write a string that 
overwrites the return address

■ Activity 1 steps through an 
example of overwriting the return 
address on the stack

Extra long 
string input

$rsp

Next return 
address

Space 
allocated for 

string
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Executing Commands on the Stack

■What if instead of jumping to a predefined 
function, we jumped to code on the stack?

■ Activity 2 steps through an example of 
executing code on the stack

Return address 
points to 
assembly 

above 

Assembly 
instructions on 

the stack

$rsp
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OS Countermeasures

■ Executable code is not allowed on the stack 
(unless we specifically allow it – e.g. through 
mprotect like we do for activity 2)

■ Thus, we must use executable code that already 
exists in the program to do what we want

■ But code often doesn’t already contain our exploit 
function – so what can we do instead?
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Return-Oriented Programming

■Goal: execute a small section of code, return, call 
another small section of code. Repeat until you 
execute your exploit

■ Activity 3 steps you through an example of a 
return-oriented programming exploit 
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Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to 

purposefully overwrite the stack
■ Activity 1 – overwrite the return addresses (Buffer 

Overflow)
■ Activity 2 – write assembly instructions onto the stack
■ Activity 3 – use byte sequences in libc as the 

instructions (Return-Oriented Programming)
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Attack Lab Activities

■Work in pairs: one student needs a laptop
■ Login to a shark machine
$ wget http://www.cs.cmu.edu/~213/activities/attack-lab-rec.tar

$ tar xf attack-lab-rec.tar

$ cd attack-lab-rec

$ make  (only do this if the executables aren’t present)
$ gdb act1

http://www.cs.cmu.edu/~213/activities/attack-lab-rec.tar
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Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

A. 0x400c63 is the address to return to in main
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Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values

(gdb) stepi // Keep doing this until

(gdb)
clobber () at support.s:16
16              ret

(gdb) x $rsp

Q. Has the return address changed?

A. 0x401040 was the first number pointed to by $rdi
(gdb) finish // Should exit and print out “Hi!”
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Activity 1 Post

■Clobber overwrites part of the stack with memory at 
$rdi, including the all-important return address

■ In act1, it writes two new return addresses:
■ 0x401040: address of printHi()
■ 0x400560: address in main

0x7fffffffe338

0x000000400c63

0x000000400560

0x000000401040
0x000000400560

Call clobber()

Clobber executes

ret

In printHi()
ret

In main()
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Activity 2
$ gdb act2

(gdb) break clobber

(gdb) run

(gdb) x $rsp

Q. What is the address of the stack and the return address?

A. 0x7fffffffdd38 -> 0x400f5a
(gdb) x /4gx $rdi

Q. What will the new return address be?

A. 0x7fffffffdd40 (First address stored using $rdi)
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Activitity 2 Continued

(gdb) x /5i $rdi + 8// Display as instructions

Q. Why $rdi + 8?
A. Want to ignore the 8-byte return address

Q. What are the three addresses?

A. 0x49b259, 0x402eb0, 0x401fe0
(gdb) break puts

(gdb) break exit

Q. Do these addresses look familiar?
A. puts – 0x402eb0, exit – 0x401fe0
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Activity 2 Post
■Normally programs cannot execute instructions on the 

stack
■ Main used mprotect to disable the memory protection for this activity

■Clobber wrote an address that’s on the stack as a 
return address

■ Followed by a sequence of instructions
■ Three addresses show up in the exploit:

▪ 0x49b259 à “Hi\n” string
▪ 0x402eb0 à puts() function
▪ 0x401fe0 à exit() function
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Activity 3
$ gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack? Why is this 
important?

A. 0x401a6e, this is the address to return to from clobber
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Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

A. Pops next stack value into $rdi, then returns

Q. Check the other addresses.  Note that some are return 
addresses and some are for data.  When you continue, 

what will the code now do?
A. Print “Hi\n”
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Activity 3 Post
■ It’s harder to stop programs from running existing 

pieces of code in the executable.

■Clobber wrote multiple return addresses (aka gadgets) 
that each performed a small task, along with data that 
will get popped off the stack while running the gadgets.

■0x401a6e: pop %rdi; retq
■0x4941f0: Pointer to the string “Hi\n”
■0x475f6a: pop %rax; retq
■0x401060: Address of a printing function
■0x47664b: callq *%rax
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■Note that some of the return addresses actually 
cut off bytes from existing instructions

Activity 3 Post

0x457d0b    …0c         …0d    
-----------------------------------------

pop %r15 retq
41         5f c3

pop %rdi retq
5f c3
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If you get stuck…

■ Please read the writeup!
■ CS:APP Chapter 3

■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Office hours Sundays - Fridays 6-10PM EDT on Z00m

■ Also Mondays 11AM-1PM, as a treat!

■ Post a private question on Piazza

■ man gdb – gdb's help command

http://www.cs.cmu.edu/~213
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Attack Lab Tools
¢ gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the 
instructions

¢ ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets

See the writeup for more details on how to use this

¢ (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful for tracing to see if an exploit is working


