Lecture 4 Activity Solution

Model 1: What is floating point?

Please note that some answers represent one interpretation and there are other valid approaches.

- 1. 1.5213×10^4
- 2. One possible representation: 8 digits. 15213104. But the answer may vary, depending how you want to represent the number.
- 3. 18213104. 8 digits
- 4. 18213107. 8 digits
- 5. 10001100, which is 1.0001.
- 6. 99999999, which is 9.9999×10^9 or 9.9999×99^9 or 9×9^{9999} .
- 7. No.

Model 2: Binary Scientific Notation

- 1. 1
- 2. 1.0111×2^4 , 1.0111×2^2 , 1.0111×2^1 , 1.0111
- 3. 1

Model 3: IEEE Representation

- 1. Sign bit. The number is negative.
- 2. 0111
- 3. 1
- 4. With no bias, it would be 2, which is greater than 1.
- 5. 0b10000000
- 6. exp = 13 + 127 = 140. $15213_{10} = 0b01000110011011011011010000000000$, or 0x466db400
- 7. From -1022 to 1023

Model 4: Extreme Exponents

- 1. 1.0000
- 2. No.
- 3. Two, one positive, one negative.
- 4. 0.0001
- 5. +inf. Yes, 2^{127} is 01111111100000 and +inf is 01111111110000.
- 6. Largest denormalized number has all 0 for exponent bits and all 1 for fraction bits. Smallest normalized number has all 0 except the lowest exponent bit to be one and all 0 for fraction bits.

Model 5: Addition and Multiplication

- 1. 1.0011×2^4
- 2. 4
- 3. 1, 1.0, 1, 2.0
- $4. \ 1.00011, \ 1.00, \ 1; \ 1.00101, \ 1.01, \ 1.25; \ 1.111, \ 10.0, \ 2; \ 1.101, \ 1.10, \ 1.5$
- 5. 1.0011×2^4 , since the number is normalized. However, if we include the leading 1, rounding to even yields 1.010×2^4 .
- 6. 2048
- $7. 2^{11}$

Model 6: Simple Floating-point

- 1. 15.5 (01101111), 1/64 (00000001)
- 2. 0, this is a cancelation error, it happens because larger floating point numbers are farther apart than smaller ones and there is a trade off between range and precision.
- 3. 7, 111
- 4.0x63
- 5. +Inf(0x70)

Model 7: Review

- 1. Yes it will, at 2^{24} . Some large numbers will have precision that cannot be represented exactly in float. The rounding rules for adding 1.0f round down at this value.
- 2. It won't terminate
- 3. No. It implies that some ints cannot be casted into an equivalent float value.
- 4. No. Double uses 53 fractional bits, so all 32-bit ints can have equivalent doubles.