
15213 Lecture 9: Advanced aka
Security

POGIL Activity Solutions

1 Getting Started

1. The struct is allocated on the stack, as a local variable.

2. Each callq instruction pushes the (correct) return address onto the
stack.

3. This function call overwrote the return address for fun() with an
address pointing to some non-program memory, causing attempted
execution of either invalid operations or non-executable operations.

2 Gets

1. We don’t!

2. When it encounters a newline or the end of the user input stream.

3. No, they purely depend on how many characters the user inputs.

1

3 Overwriting Stack

1. 0x18 (24) bytes are allocated on the stack in echo().

2. The input buffer is at most 0x18 (24) bytes long. (Note that the
compiler may have inserted padding to align the stack.) The user
may or may not enter a string shorter than this safe length.

3.

+0x28 ??

+0x20 ??

+0x18 return address

+0x10 user string

+0x08 user string

+0x00 user string ← $rsp = 0x414140

...

4. The solution is given using ASCII bytes with addresses increasing
left to right.

+0x28 ??

+0x20 ??

+0x18 @AA00000

+0x10 123456781

+0x08 12345678

+0x00 12345678 ← $rsp = 0x414140

...

1Assuming the upper 4 bytes of the original return address was all 0’s

4 Exploit

1. Starting from echo()’s call to gets(), at 0x4006d6:

0x4006d6 -> 0x4006db (mov) -> 0x4006de (puts) -> 0x4006e3 (add) ->

0x4006e7 (retq) -> [USER INPUT] 0x414140 (xor) -> 0x414143 ... etc.

2. When control was going to be returned to echo()’s caller, control
was instead transferred to user input on the stack.

1. movl $decafbad, %eax

2. The instruction bytes would replace the first 1–5 characters of the
input string.

1. See footnote 1, question 3.3

5 Defense

1. fgets() is safer than gets() because it is called with a maximum
number of bytes to read from the given stream.

2. Execution would jump to an unknown section of memory, almost
certainly executing non-executable or invalid code before being ter-
minated by the OS.

3. By randomizing the starting address of the stack at runtime.

1. <...echo()’s code...>

%rax = 0x28;

*(%rsp + 8) = %rax;

%rax = 0;

<...echo()’s code...>

%rax = *(%rsp + 8);

if (%rax != 0x28) stack_chk_fail()

<...echo()’s return...>

2. We would overwrite *(%rsp + 8), causing stack_chk_fail() to be
executed and our program to terminate.

3. This method of defense makes our program slower to compile, as the
compiler needs to determine where and how to insert these ‘canaries,’
slower to execute, as it involves adding instructions, and makes our
program larger (in the given example echo() grew by 37 bytes).

6 ROP

1. We overwrote the return address for echo()’s caller before executing
retq.

2. The byte value c3 corresponds to a ret instruction.

3. The sequence of bytecode instructions appears at address 0x4004d3.

1. movq %rax, %rdi

retq

<...instructions starting at the second next stack address

prior to running this code block...>

2. If there is no return instruction at the end of the gadget, execution
will never jump to the next gadget in the chain.

	Getting Started
	Gets
	Overwriting Stack
	Exploit
	Defense
	ROP

